Use of Pavement Management System Data to Enhance Pavement Performance Specifications in Canada

Author(s):  
James Dale Smith ◽  
Stephen Lee ◽  
Thomas J. Kazmierowski
Author(s):  
Steve F. Shober ◽  
David A. Friedrichs

An effective pavement management system requires a comprehensive pavement preservation strategy (PPS). Wisconsin’s PPS is guided by a philosophy whose goal is to optimize pavement performance to provide the highest quality service to the customer per unit of expenditure. The PPS is customer-oriented and views “service” in terms of user comfort, convenience, and safety. The strategy is broad-scoped and considers all pavement management activities, from “do nothing” to reconstruction. Wisconsin’s PPS has program values that are based on solid research that has been field verified. The treatment alternatives recommended for any particular pavement problem address the causes, not the symptoms, of that particular problem—thus, the root cause of the problem is addressed, and funds are not used to treat merely a symptom. Accordingly, the PPS is termed a cause-based instead of a schedule-based strategy (applying treatments on a predetermined schedule), or a “worst first” strategy (treating the worst pavements first). The PPS follows a logical progression through a series of evaluations to convert a set of raw, field-collected data (ride and distress) to, ultimately, a set of recommended actions. The process moves from raw data to an evaluation of the level of the distress. Combinations of distress levels are used to identify specific pavement problems. In turn, these pavement problems are evaluated as a family to generate appropriate, cost-beneficial solutions.


2021 ◽  
Author(s):  
Muzaffar Hassan

Measuring pavement performance is a major component of the pavement management system. It assists in decision-making for finding the optimum strategies to provide, evaluate, and maintain serviceability in an acceptable condition cost effectively. The Ontario Ministry of Transportation (MTO) has been systematically rating pavement performance since the mid-1960s. Pavement condition survey involves measurement of two physical parameters: ride quality of pavement surfaces, and the extent and severity of pavement distress manifestations. The pavement ride quality can be measured with an acceptable level of consistency and repeatability through automation. However, achieving consistency in the evaluation of pavement distress manifestations is a challenging task because the automation that could accurately and consistently detect, quantify and record surface distresses is not fully developed is spite of rapid advances in video imagery and non-contact sensing devices. This report evaluates the progress made over the past three decades in the key areas of Distress Manifestation Index, Riding Comfort Rating, Pavement Condition Index and second generation Pavement Management System (PMS2). A review of the Ministryʼs network-level pavement performance database is presented, emphasizing pavement condition surveys, prediction models and main factors influencing assessment of long-term pavement performance. Several key issues related to the quality control and quality assurance of the pavement roughness are discussed with reference to the verification techniques used by the MTO. Based on the literature review, future recommendations for possible improvements of the prediction models and techniques used for the evaluation of pavement performance are presented in order to obtain more consistent values.


Author(s):  
L. B. Wang ◽  
JinYoung Park ◽  
Sonya H. Hill

Pavement warranty is an innovative contracting procedure increasingly adopted by highway agencies. Many states view implementing warranties as a way to protect their investment in pavement construction. The major benefit of pavement warranty is enhanced pavement performance. However, establishing warranty criteria and monitoring the performance of warranted pavement are two technical issues that must be resolved. This paper presents the discoveries of a research project supported by FHWA to investigate the effectiveness of using the pavement management system (PMS) to monitor the performance of pavement under warranty. It has been discovered that most states establish their warranty specifications on the basis of performance data from their PMS database by using statistical analyses, expert opinions, and adaptation of other states’ specifications. They also use the PMS data to monitor the performance of both warranty and nonwarranty pavements because the essential data, like ride, cracking, and rutting, are available in the database and are convenient for use. This paper also documents the unique features of the warranty specifications, including the warranty period, performance indicators, data collection methods, performance thresholds, remedial actions, and how the PMS database can be used to track the performance of pavements under warranty in five states: Indiana, Wisconsin, Ohio, Florida, and Michigan. Some comparisons of the performances of the warranted pavements and those of nonwarranted pavements of similar conditions are also presented. The survey indicated that an integrated PMS that links the materials and traffic database would offer better efficiency to monitor and analyze the performance of both warranty and nonwarranty pavements.


2021 ◽  
Author(s):  
Muzaffar Hassan

Measuring pavement performance is a major component of the pavement management system. It assists in decision-making for finding the optimum strategies to provide, evaluate, and maintain serviceability in an acceptable condition cost effectively. The Ontario Ministry of Transportation (MTO) has been systematically rating pavement performance since the mid-1960s. Pavement condition survey involves measurement of two physical parameters: ride quality of pavement surfaces, and the extent and severity of pavement distress manifestations. The pavement ride quality can be measured with an acceptable level of consistency and repeatability through automation. However, achieving consistency in the evaluation of pavement distress manifestations is a challenging task because the automation that could accurately and consistently detect, quantify and record surface distresses is not fully developed is spite of rapid advances in video imagery and non-contact sensing devices. This report evaluates the progress made over the past three decades in the key areas of Distress Manifestation Index, Riding Comfort Rating, Pavement Condition Index and second generation Pavement Management System (PMS2). A review of the Ministryʼs network-level pavement performance database is presented, emphasizing pavement condition surveys, prediction models and main factors influencing assessment of long-term pavement performance. Several key issues related to the quality control and quality assurance of the pavement roughness are discussed with reference to the verification techniques used by the MTO. Based on the literature review, future recommendations for possible improvements of the prediction models and techniques used for the evaluation of pavement performance are presented in order to obtain more consistent values.


Sign in / Sign up

Export Citation Format

Share Document