performance specifications
Recently Published Documents


TOTAL DOCUMENTS

501
(FIVE YEARS 113)

H-INDEX

23
(FIVE YEARS 5)

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Shashank S. Kumat ◽  
Panos S. Shiakolas

Abstract Background Tissue healthiness could be assessed by evaluating its viscoelastic properties through localized contact reaction force measurements to obtain quantitative time history information. To evaluate these properties for hard to reach and confined areas of the human body, miniature force sensors with size constraints and appropriate load capabilities are needed. This research article reports on the design, fabrication, integration, characterization, and in vivo experimentation of a uniaxial miniature force sensor on a human forearm. Methods The strain gauge based sensor components were designed to meet dimensional constraints (diameter ≤3.5mm), safety factor (≥3) and performance specifications (maximum applied load, resolution, sensitivity, and accuracy). The sensing element was fabricated using traditional machining. Inverted vat photopolymerization technology was used to prototype complex components on a Form3 printer; micro-component orientation for fabrication challenges were overcome through experimentation. The sensor performance was characterized using dead weights and a LabVIEW based custom developed data acquisition system. The operational performance was evaluated by in vivo measurements on a human forearm; the relaxation data were used to calculate the Voigt model viscoelastic coefficient. Results The three dimensional (3D) printed components exhibited good dimensional accuracy (maximum deviation of 183μm). The assembled sensor exhibited linear behavior (regression coefficient of R2=0.999) and met desired performance specifications of 3.4 safety factor, 1.2N load capacity, 18mN resolution, and 3.13% accuracy. The in vivo experimentally obtained relaxation data were analyzed using the Voigt model yielding a viscoelastic coefficient τ=12.38sec and a curve-fit regression coefficient of R2=0.992. Conclusions This research presented the successful design, use of 3D printing for component fabrication, integration, characterization, and analysis of initial in vivo collected measurements with excellent performance for a miniature force sensor for the assessment of tissue viscoelastic properties. Through this research certain limitations were identified, however the initial sensor performance was promising and encouraging to continue the work to improve the sensor. This micro-force sensor could be used to obtain tissue quantitative data to assess tissue healthiness for medical care over extended time periods.


2021 ◽  
Author(s):  
Haakon Ellingsen ◽  
Hikmat Jaouhar ◽  
Andreas Hannisdal

Abstract Maturing oil fields can pose a severe challenge for separation of oil and water. Increasing water production and tie in of new fields into existing infrastructure may result in separators struggling to meet performance specifications. Operational challenges are particularly experienced when the facilities are processing cold feedstock and tight emulsions. Typical solutions for overcoming separation challenges would be increasing operating temperature, injecting an increased quantity of demulsifier chemicals, or installing new larger separators. These alternatives may not be economically attractive or feasible for other reasons. The ability to successfully operate existing plants with tight and water-rich emulsions without incurring significant added operating expenditure is perceived as a major advantage. This paper will share the results from testing on a separator operating with Flotta Gold crude oil. The oil is known to produce particularly tight emulsions at low temperatures. The ePack technology has been tested to study its capability of separating water and crude oil from tight emulsions by means of electrical forces. The force generated by the high electrical field can break even tight emulsions, and the test results shown have proven the ability to go from very low separation efficiency without the ePack, to more than 90% water removal with the ePack turned on. Testing with residence times of up to 19 minutes without the ePack was not able to surpass the performance of a three minutes residence time with the ePack energized.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
C. Steven Díaz-Choque ◽  
L. C. Félix-Herrán ◽  
Ricardo A. Ramírez-Mendoza

This manuscript establishes a methodology that guides the designers to develop an optimal controller for a semiactive suspension system. The methodology’s processes are generally explained and straightforwardly, so a designer can extrapolate the methodology to a specific problem. Furthermore, this research presents an optimal control strategy for a semiactive control applied to a quarter vehicle model as an example of using the methodology. A particular interest is made in the advantages of such a simple synthesis and in the compromises that must be done in skyhook and groundhook control law applications. This manuscript exposes a logical and straightforward approach for choosing the controllers’ design parameters; also, efforts must be made to express precise performance specifications and constraints in the control design. The herein methodology could be relevant in the process design for intelligent suspensions, from one-quarter toward the entire vehicle.


2021 ◽  
Author(s):  
S. Lischke ◽  
A. Peczek ◽  
J. S. Morgan ◽  
K. Sun ◽  
D. Steckler ◽  
...  

AbstractOn a scalable silicon technology platform, we demonstrate photodetectors matching or even surpassing state-of-the-art III–V devices. As key components in high-speed optoelectronics, photodetectors with bandwidths greater than 100 GHz have been a topic of intense research for several decades. Solely InP-based detectors could satisfy the highest performance specifications. Devices based on other materials, such as germanium-on-silicon devices, used to lag behind in speed, but enabled complex photonic integrated circuits and co-integration with silicon electronics. Here we demonstrate waveguide-coupled germanium photodiodes with optoelectrical 3-dB bandwidths of 265 GHz and 240 GHz at a photocurrent of 1 mA. This outstanding performance is achieved by a novel device concept in which a germanium fin is sandwiched between complementary in situ-doped silicon layers. Our photodetectors show internal responsivities of 0.3 A W−1 (265 GHz) and 0.45 A W−1 (240 GHz) at a wavelength of 1,550 nm. The internal bandwidth–efficiency product of the latter device is 86 GHz. Low dark currents of 100–200 nA are obtained from these ultra-fast photodetectors.


Author(s):  
Pilar Fernández-Calle ◽  
Jorge Díaz-Garzón ◽  
William Bartlett ◽  
Sverre Sandberg ◽  
Federica Braga ◽  
...  

Abstract Objectives Testing for thyroid disease constitutes a high proportion of the workloads of clinical laboratories worldwide. The setting of analytical performance specifications (APS) for testing methods and aiding clinical interpretation of test results requires biological variation (BV) data. A critical review of published BV studies of thyroid disease related measurands has therefore been undertaken and meta-analysis applied to deliver robust BV estimates. Methods A systematic literature search was conducted for BV studies of thyroid related analytes. BV data from studies compliant with the Biological Variation Data Critical Appraisal Checklist (BIVAC) were subjected to meta-analysis. Global estimates of within subject variation (CVI) enabled determination of APS (imprecision and bias), indices of individuality, and indicative estimates of reference change values. Results The systematic review identified 17 relevant BV studies. Only one study (EuBIVAS) achieved a BIVAC grade of A. Methodological and statistical issues were the reason for B and C scores. The meta-analysis derived CVI generally delivered lower APS for imprecision than the mean CVA of the studies included in this systematic review. Conclusions Systematic review and meta-analysis of studies of BV of thyroid disease biomarkers have enabled delivery of well characterized estimates of BV for some, but not all measurands. The newly derived APS for imprecision for both free thyroxine and triiodothyronine may be considered challenging. The high degree of individuality identified for thyroid related measurands reinforces the importance of RCVs. Generation of BV data applicable to multiple scenarios may require definition using “big data” instead of the demanding experimental approach.


Author(s):  
Tze Ping Loh ◽  
Alison F Smith ◽  
Katy JL Bell ◽  
Sarah J Lord ◽  
Ferruccio Ceriotti ◽  
...  

Author(s):  
Sara Pasqualetti ◽  
Francesca Borrillo ◽  
Leila Rovegno ◽  
Mauro Panteghini

Abstract Although being the recommended laboratory test to diagnose acute pancreatitis, serum pancreatic lipase (LIP) is among the poorly standardized laboratory tests, and laboratory stakeholders often appear to not take enough care of the quality of its measurements. Here we discuss some important issues that, if not correctly managed and solved, make misdiagnosis of acute pancreatitis by using serum LIP a real possibility. First, the current unavailability of a suitable higher-order reference material to be used as common calibrator should be filled up to definitively improve the inter-method bias. Second, knowledge of the analytical characteristics that may explain the defective performance of LIP assays should be deepened. IVD manufacturers should be more explicit in providing this information, including description of their internal protocol for transferring LIP values from internal references to commercial calibrators. Third, recommended models for accurately estimating measurement uncertainty and reliably defining analytical performance specifications for LIP measurements should be applied. Finally, investments considering alternative options for measuring LIP (e.g., targeted to the development of automated LIP immunoassays) should be warranted. All involved stakeholders (standardization bodies, higher-order reference providers, in vitro diagnostics manufacturers, and laboratory professionals) should contribute to fill the existing gap.


Sign in / Sign up

Export Citation Format

Share Document