scholarly journals Higher Order Approximation for Spatio-Temporal Derivative Method

1992 ◽  
Vol 12 (1Supplement) ◽  
pp. 127-130
Author(s):  
Shigeru NISHIO ◽  
Taketoshi OKUNO ◽  
Shusaku MORIKAWA
2003 ◽  
Vol 23 (Supplement1) ◽  
pp. 21-24
Author(s):  
Yasufumi YAMAMOTO ◽  
Yuya AKAMATSU ◽  
Noriyoshi YONEHARA ◽  
Tomomasa UEMURA

2020 ◽  
Vol 34 (03) ◽  
pp. 2669-2676 ◽  
Author(s):  
Wei Peng ◽  
Xiaopeng Hong ◽  
Haoyu Chen ◽  
Guoying Zhao

Human action recognition from skeleton data, fuelled by the Graph Convolutional Network (GCN) with its powerful capability of modeling non-Euclidean data, has attracted lots of attention. However, many existing GCNs provide a pre-defined graph structure and share it through the entire network, which can loss implicit joint correlations especially for the higher-level features. Besides, the mainstream spectral GCN is approximated by one-order hop such that higher-order connections are not well involved. All of these require huge efforts to design a better GCN architecture. To address these problems, we turn to Neural Architecture Search (NAS) and propose the first automatically designed GCN for this task. Specifically, we explore the spatial-temporal correlations between nodes and build a search space with multiple dynamic graph modules. Besides, we introduce multiple-hop modules and expect to break the limitation of representational capacity caused by one-order approximation. Moreover, a corresponding sampling- and memory-efficient evolution strategy is proposed to search in this space. The resulted architecture proves the effectiveness of the higher-order approximation and the layer-wise dynamic graph modules. To evaluate the performance of the searched model, we conduct extensive experiments on two very large scale skeleton-based action recognition datasets. The results show that our model gets the state-of-the-art results in term of given metrics.


Sign in / Sign up

Export Citation Format

Share Document