Super-Resolution PIV using Spatio-temporal Derivative Method by Upstream-Downstream Finite Difference

2003 ◽  
Vol 2003 (0) ◽  
pp. 200
Author(s):  
Yasufumi YAMAMOTO ◽  
Yuya AKAMATSU ◽  
Noriyoshi YONEHARA ◽  
Tomomasa UEMURA
2003 ◽  
Vol 23 (Supplement1) ◽  
pp. 21-24
Author(s):  
Yasufumi YAMAMOTO ◽  
Yuya AKAMATSU ◽  
Noriyoshi YONEHARA ◽  
Tomomasa UEMURA

1992 ◽  
Vol 12 (1Supplement) ◽  
pp. 127-130
Author(s):  
Shigeru NISHIO ◽  
Taketoshi OKUNO ◽  
Shusaku MORIKAWA

Author(s):  
Kojiro Matsushita ◽  
Toyotaro Tokimoto ◽  
Kengo Fujii ◽  
Hirotsugu Yamamoto

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liliana Barbieri ◽  
Huw Colin-York ◽  
Kseniya Korobchevskaya ◽  
Di Li ◽  
Deanna L. Wolfson ◽  
...  

AbstractQuantifying small, rapidly evolving forces generated by cells is a major challenge for the understanding of biomechanics and mechanobiology in health and disease. Traction force microscopy remains one of the most broadly applied force probing technologies but typically restricts itself to slow events over seconds and micron-scale displacements. Here, we improve >2-fold spatially and >10-fold temporally the resolution of planar cellular force probing compared to its related conventional modalities by combining fast two-dimensional total internal reflection fluorescence super-resolution structured illumination microscopy and traction force microscopy. This live-cell 2D TIRF-SIM-TFM methodology offers a combination of spatio-temporal resolution enhancement relevant to forces on the nano- and sub-second scales, opening up new aspects of mechanobiology to analysis.


Sign in / Sign up

Export Citation Format

Share Document