fractional wave equation
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 42)

H-INDEX

15
(FIVE YEARS 4)

Author(s):  
Jia Wei He ◽  
Yong Zhou

In this paper, we concern with a backward problem for a nonlinear time fractional wave equation in a bounded domain. By applying the properties of Mittag-Leffler functions and the method of eigenvalue expansion, we establish some results about the existence and uniqueness of the mild solutions of the proposed problem based on the compact technique. Due to the ill-posedness of backward problem in the sense of Hadamard, a general filter regularization method is utilized to approximate the solution and further we prove the convergence rate for the regularized solutions.


2021 ◽  
Author(s):  
Manizheh Ghaffari ◽  
Tofigh Allahviranloo ◽  
Saeid Abbasbandy ◽  
Mahdi Azhini

Abstract The main focus of this paper is to develop an efficient analytical method to obtain the traveling wave fuzzy solution for the fuzzy generalized Hukuhara conformable fractional equations by considering the type of generalized Hukuhara conformable fractional differentiability of the solution. To achieve this, the fuzzy conformable fractional derivative based on the generalized Hukuhara differentiability is defined, and several properties are brought on the topic, such as switching points and the fuzzy chain rule. After that, a new analytical method is applied to find the exact solutions for two famous mathematical equations: the fuzzy fractional Wave equation and the fuzzy fractional Diffusion equation. The present work is the first report in which the fuzzy traveling wave method is used to design an analytical method to solve these fuzzy problems. The final examples are asserted that our new method is applicable and efficient.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 230
Author(s):  
Entsar A. Abdel-Rehim

In this paper, the time-fractional wave equation associated with the space-fractional Fokker–Planck operator and with the time-fractional-damped term is studied. The concept of the Green function is implemented to drive the analytic solution of the three-term time-fractional equation. The explicit expressions for the Green function G3(t) of the three-term time-fractional wave equation with constant coefficients is also studied for two physical and biological models. The explicit analytic solutions, for the two studied models, are expressed in terms of the Weber, hypergeometric, exponential, and Mittag–Leffler functions. The relation to the diffusion equation is given. The asymptotic behaviors of the Mittag–Leffler function, the hypergeometric function 1F1, and the exponential functions are compared numerically. The Grünwald–Letnikov scheme is used to derive the approximate difference schemes of the Caputo time-fractional operator and the Feller–Riesz space-fractional operator. The explicit difference scheme is numerically studied, and the simulations of the approximate solutions are plotted for different values of the fractional orders.


2021 ◽  
Author(s):  
Zhan-Mei Yuan ◽  
Hua-Cheng Zhou

Abstract In this paper, we investigate the event-triggered boundary feedback control problem for an unstable time fractional wave equation with unknown perturbation at the boundary. To cope with the instability of system when there is no disturbance, the backstepping method is adopted to convert the original unstable system into a stable system. An UDE-based estimator based on low-pass filter is proposed to estimate unknown time-varying input disturbance. With the estimation of disturbance, the event-triggered boundary feedback controller is proposed. It is shown that the event-triggered strategy could asymptotically stabilize system and a positive lower bounded of minimum inter-event time is ensured to exclude the Zeno phenomenon.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 141
Author(s):  
Rabha W. Ibrahim ◽  
Dumitru Baleanu

(1) Background: symmetry breaking (self-organized transformation of symmetric stats) is a global phenomenon that arises in an extensive diversity of essentially symmetric physical structures. We investigate the symmetry breaking of time-2D space fractional wave equation in a complex domain; (2) Methods: a fractional differential operator is used together with a symmetric operator to define a new fractional symmetric operator. Then by applying the new operator, we formulate a generalized time-2D space fractional wave equation. We shall utilize the two concepts: subordination and majorization to present our results; (3) Results: we obtain different formulas of analytic solutions using the geometric analysis. The solution suggests univalent (1-1) in the open unit disk. Moreover, under certain conditions, it was starlike and dominated by a chaotic function type sine. In addition, the authors formulated a fractional time wave equation by using the Atangana–Baleanu fractional operators in terms of the Riemann–Liouville and Caputo derivatives.


Sign in / Sign up

Export Citation Format

Share Document