The Impact of Sampling Method on Maximum Entropy Species Distribution Modeling for Bats

2014 ◽  
Vol 16 (1) ◽  
pp. 241-248 ◽  
Author(s):  
Paul R. Barnhart ◽  
Erin H. Gillam
2021 ◽  
pp. 1-8
Author(s):  
Thaísa Araújo ◽  
Helena Machado ◽  
Dimila Mothé ◽  
Leonardo dos Santos Avilla

Abstract Climatic and environmental changes, as well as human action, have been cited as potential causes for the extinction of megafauna in South America at the end of the Pleistocene. Among megamammals lineages with Holarctic origin, only horses and proboscideans went extinct in South America during this period. This study aims to understand how the spatial extent of habitats suitable for Equus neogeus and Notiomastodon platensis changed between the last glacial maximum (LGM) and the middle Holocene in order to determine the impact that climatic and environmental changes had on these taxa. We used species distribution modeling to estimate their potential extent on the continent and found that both species occupied arid and semiarid open lands during the LGM, mainly in the Pampean region of Argentina, southern and northeastern Brazil, and parts of the Andes. However, when climate conditions changed from dry and cold during the LGM to humid and warm during the middle Holocene, the areas suitable for these taxa were reduced dramatically. These results support the hypothesis that climatic changes were a driving cause of extinction of these megamammals in South America, although we cannot rule out the impact of human actions or other potential causes for their extinction.


Author(s):  
Pedro Corrêa ◽  
Mariana Carvalhaes ◽  
Antonio Saraiva ◽  
Fabrício Rodrigues ◽  
Elisângela Rodrigues ◽  
...  

Computational modeling techniques for species geographic distribution are critical to support the task of identifying areas with high risk of loss of Biodiversity. These tools can assist in the conservation of Biodiversity, in planning the use of non-inhabited regions, in estimating the risk of invasive species, in the proposed reintroduction programs for species and even in planning the protecting endangered species. Furthermore, such techniques can help to understand the effects of climate change and other changes in the geographical distribution of species. This chapter presents concepts related to the species distribution modeling and algorithms based on Neural Networks and Maximum Entropy as alternatives for modeling of species distribution. The algorithms were integrated into the open source tool called openModeller used by biologists and other researchers in this area. A case study of modeling the distribution of babaçu (Orbignya phalerata) in the Piauí State – Brazil is presented, evaluating the potential distribution of this species used to produce bioenergy. Fifty models were generated and merged the ten models with best accuracy for each algorithm. The results show that the models obtained by both are consistent. The models obtained with Maximum Entropy seem to reflect best the reality, considering the occurrence pattern of babaçu as a secondary species.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
B Liu ◽  
F Li ◽  
Z Guo ◽  
L Hong ◽  
W Huang ◽  
...  

2018 ◽  
Vol 80 (6) ◽  
pp. 457-461
Author(s):  
Carlos A. Morales-Ramirez ◽  
Pearlyn Y. Pang

Open-source data are information provided free online. It is gaining popularity in science research, especially for modeling species distribution. MaxEnt is an open-source software that models using presence-only data and environmental variables. These variables can also be found online and are generally free. Using all of these open-source data and tools makes species distribution modeling (SDM) more accessible. With the rapid changes our planet is undergoing, SDM helps understand future habitat suitability for species. Due to increasing interest in biogeographic research, SDM has increased for marine species, which were previously not commonly found in this modeling. Here we provide examples of where to obtain the data and how the modeling can be performed and taught.


2021 ◽  
Vol 257 ◽  
pp. 109148
Author(s):  
Leonardo de Sousa Miranda ◽  
Marcelo Awade ◽  
Rodolfo Jaffé ◽  
Wilian França Costa ◽  
Leonardo Carreira Trevelin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document