richness patterns
Recently Published Documents


TOTAL DOCUMENTS

273
(FIVE YEARS 63)

H-INDEX

48
(FIVE YEARS 4)

Author(s):  
Rob Critchlow ◽  
Charles A. Cunningham ◽  
Humphrey Q. P. Crick ◽  
Nicholas A. Macgregor ◽  
Michael D. Morecroft ◽  
...  

AbstractProtected area (PA) networks have in the past been constructed to include all major habitats, but have often been developed through consideration of only a few indicator taxa or across restricted areas, and rarely account for global climate change. Systematic conservation planning (SCP) aims to improve the efficiency of biodiversity conservation, particularly when addressing internationally agreed protection targets. We apply SCP in Great Britain (GB) using the widest taxonomic coverage to date (4,447 species), compare spatial prioritisation results across 18 taxa and use projected future (2080) distributions to assess the potential impact of climate change on PA network effectiveness. Priority conservation areas were similar among multiple taxa, despite considerable differences in spatial species richness patterns; thus systematic prioritisations based on indicator taxa for which data are widely available are still useful for conservation planning. We found that increasing the number of protected hectads by 2% (to reach the 2020 17% Aichi target) could have a disproportionate positive effect on species protected, with an increase of up to 17% for some taxa. The PA network in GB currently under-represents priority species but, if the potential future distributions under climate change are realised, the proportion of species distributions protected by the current PA network may increase, because many PAs are in northern and higher altitude areas. Optimal locations for new PAs are particularly concentrated in southern and upland areas of GB. This application of SCP shows how a small addition to an existing PA network could have disproportionate benefits for species conservation.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0260543
Author(s):  
Carlos Cerrejón ◽  
Osvaldo Valeria ◽  
Jesús Muñoz ◽  
Nicole J. Fenton

In Canadian boreal forests, bryophytes represent an essential component of biodiversity and play a significant role in ecosystem functioning. Despite their ecological importance and sensitivity to disturbances, bryophytes are overlooked in conservation strategies due to knowledge gaps on their distribution, which is known as the Wallacean shortfall. Rare species deserve priority attention in conservation as they are at a high risk of extinction. This study aims to elaborate predictive models of rare bryophyte species in Canadian boreal forests using remote sensing-derived predictors in an Ensemble of Small Models (ESMs) framework. We hypothesize that high ESMs-based prediction accuracy can be achieved for rare bryophyte species despite their low number of occurrences. We also assess if there is a spatial correspondence between rare and overall bryophyte richness patterns. The study area is located in western Quebec and covers 72,292 km2. We selected 52 bryophyte species with <30 occurrences from a presence-only database (214 species, 389 plots in total). ESMs were built from Random Forest and Maxent techniques using remote sensing-derived predictors related to topography and vegetation. Lee’s L statistic was used to assess and map the spatial relationship between rare and overall bryophyte richness patterns. ESMs yielded poor to excellent prediction accuracy (AUC > 0.5) for 73% of the modeled species, with AUC values > 0.8 for 19 species, which confirmed our hypothesis. In fact, ESMs provided better predictions for the rarest bryophytes. Likewise, our study revealed a spatial concordance between rare and overall bryophyte richness patterns in different regions of the study area, which have important implications for conservation planning. This study demonstrates the potential of remote sensing for assessing and making predictions on inconspicuous and rare species across the landscape and lays the basis for the eventual inclusion of bryophytes into sustainable development planning.


2021 ◽  
Vol 133 ◽  
pp. 108417
Author(s):  
Chunyan Zhang ◽  
Liping Li ◽  
Yanning Guan ◽  
Danlu Cai ◽  
Hong Chen ◽  
...  

Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 622
Author(s):  
Klemen Čandek ◽  
Ingi Agnarsson ◽  
Greta J. Binford ◽  
Matjaž Kuntner

Dispersal ability can affect levels of gene flow thereby shaping species distributions and richness patterns. The intermediate dispersal model of biogeography (IDM) predicts that in island systems, species diversity of those lineages with an intermediate dispersal potential is the highest. Here, we tested this prediction on long-jawed spiders (Tetragnatha) of the Caribbean archipelago using phylogenies from a total of 318 individuals delineated into 54 putative species. Our results support a Tetragnatha monophyly (within our sampling) but reject the monophyly of the Caribbean lineages, where we found low endemism yet high diversity. The reconstructed biogeographic history detects a potential early overwater colonization of the Caribbean, refuting an ancient vicariant origin of the Caribbean Tetragnatha as well as the GAARlandia land-bridge scenario. Instead, the results imply multiple colonization events to and from the Caribbean from the mid-Eocene to late-Miocene. Among arachnids, Tetragnatha uniquely comprises both excellently and poorly dispersing species. A direct test of the IDM would require consideration of three categories of dispersers; however, long-jawed spiders do not fit one of these three a priori definitions, but rather represent a more complex combination of attributes. A taxon such as Tetragnatha, one that readily undergoes evolutionary changes in dispersal propensity, can be referred to as a ‘dynamic disperser’.


Author(s):  
M.U. Mohamed Anas ◽  
Nicholas E. Mandrak

Understanding the relative roles of the historical, environmental, and anthropogenic processes underlying spatial biodiversity patterns is crucial to predict the impacts of global environmental changes. We quantified the relative roles of these factors in influencing species richness of total, native, non-native, and at-risk freshwater fishes in 985 tertiary watersheds across Canada, while accounting for correlations among descriptors and spatial autocorrelation. Our findings indicate differences in factors influencing richness patterns among species categories. Environmental factors related to energy availability and historical factors related to post-glacial recolonization both played roles in shaping spatial variation in native species richness. In contrast, variation in non-native species richness was largely related to human activities increasing propagule pressure and habitat disturbance, which were greater for foreign species (i.e. not native to Canada) than for translocated native species. Anthropogenic processes and environmental conditions were both important determinants of at-risk species richness. Our study emphasizes the importance of an integrated approach that simultaneously considers natural and anthropogenic processes to better predict the fish biodiversity change at the landscape scale.


Author(s):  
Hazel Berrios ◽  
Indiana Coronado ◽  
Travis Marsico

Research that has been conducted documenting species richness patterns on tropical mountains has resulted in conflicting observations: monotonic declines with increasing elevation, monotonic increase with increasing elevation, and a mid-elevation ‘bulge.’ Currently, it is unclear if these differences are due to environmental differences associated with the various study areas, the taxonomic groups or ecological groups (e.g., growth form) sampled, or the scale of the study area along an elevation gradient. Because of the difficulty in sampling and identifying canopy-dwelling plants, the number of inventories quantifying tropical epiphytes is relatively limited and recent. In this study, we provide a detailed qualitative and quantitative assessment of the vascular epiphyte flora and its spatial distribution on Volcán Maderas, Isla de Ometepe, Nicaragua, including weather and environmental measurements along the entire elevation gradient of the volcano. We sampled epiphytes in five distinct forest types associated with increasing elevation as follows: dry forest, humid forest, wet forest, cloud forest, and elfin forest Five weather stations were placed along the elevation gradient for us to relate observed patterns to environmental conditions. A hump-shaped species richness pattern was detected for all vascular epiphytes at approximately 1000 m in elevation (cloud forest), yet species abundance increased with increasing elevation. In total we obtained 206 unique species identifications of vascular epiphytes belonging to 26 families and 73 genera. The most species-rich family was the Orchidaceae with 55 species for the entire elevation gradient, followed by Bromeliaceae (29 species), Araceae (23), Polypodiaceae (25), Dryopteridaceae (16), and Piperaceae (11), with all other families respresented by fewer than 10 species each. We found that richness patterns differ phylogenetically within epiphytes, possibly due to different adaptive strategies, and species for the most part appear to be narrowly distributed within specific habitat zones along the elevation gradient.


Ecography ◽  
2021 ◽  
Author(s):  
Jian Liu ◽  
Anders J. Lindstrom ◽  
Nathalie S. Nagalingum ◽  
John J. Wiens ◽  
Xun Gong
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Bikram Pandey ◽  
Kaiwen Pan ◽  
Mohammed A. Dakhil ◽  
Ziyan Liao ◽  
Arbindra Timilsina ◽  
...  

The species richness–climate relationship is a significant concept in determining the richness patterns and predicting the cause of its distribution. The distribution range of species and climatic variables along elevation have been used in evaluating the elevational diversity gradients (EDG). However, the species richness of gymnosperms along elevation and its driving factors in large geographic areas are still unknown. Here, we aimed at evaluating the EDG of gymnosperms in the ecoregions of China. We divided the geographical region of China into 34 ecoregions and determine the richness pattern of gymnosperm taxa along elevation gradients. We demonstrated the richness patterns of the 237-gymnosperm (219 threatened, 112 endemic, 189 trees, and 48 shrubs) taxa, roughly distributed between 0 and 5,300 m (above sea level) in China. As possible determinants of richness patterns, annual mean temperature (TEMP), annual precipitation (PPT), potential evapotranspiration (PET), net primary productivity (SNPP), aridity index (AI), temperature seasonality (TS), and precipitation seasonality (PS) are the major predictor variables driving the EDG in plants. We used the species interpolation method to determine the species richness at each elevation band. To evaluate the richness pattern of gymnosperms in an ecoregion, generalized additive modeling and structural equation modeling were performed. The ecoregions in the southern part of China are rich in gymnosperm species, where three distinct richness patterns—(i) hump-shaped, (ii) monotonic increase, and (iii) monotonic decline—were noticed in China. All climatic variables have a significant effect on the richness pattern of gymnosperms; however, TEMP, SNPP, TS, and PS explained the highest deviance in diversity-rich ecoregions of China. Our results suggests that the highest number of gymnosperms species was found in the southwestern and Taiwan regions of China distributed at the 1,600- and 2,800-m elevation bands. These regions could be under severe stress in the near future due to expected changes in precipitation pattern and increase of temperature due to climate change. Thus, our study provided evidence of the species–climate relationship that can support the understanding of future conservation planning of gymnosperms.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 275
Author(s):  
Mariana A. Tsianou ◽  
Maria Lazarina ◽  
Danai-Eleni Michailidou ◽  
Aristi Andrikou-Charitidou ◽  
Stefanos P. Sgardelis ◽  
...  

The ongoing biodiversity crisis reinforces the urgent need to unravel diversity patterns and the underlying processes shaping them. Although taxonomic diversity has been extensively studied and is considered the common currency, simultaneously conserving other facets of diversity (e.g., functional diversity) is critical to ensure ecosystem functioning and the provision of ecosystem services. Here, we explored the effect of key climatic factors (temperature, precipitation, temperature seasonality, and precipitation seasonality) and factors reflecting human pressures (agricultural land, urban land, land-cover diversity, and human population density) on the functional diversity (functional richness and Rao’s quadratic entropy) and species richness of amphibians (68 species), reptiles (107 species), and mammals (176 species) in Europe. We explored the relationship between different predictors and diversity metrics using generalized additive mixed model analysis, to capture non-linear relationships and to account for spatial autocorrelation. We found that at this broad continental spatial scale, climatic variables exerted a significant effect on the functional diversity and species richness of all taxa. On the other hand, variables reflecting human pressures contributed significantly in the models even though their explanatory power was lower compared to climatic variables. In most cases, functional richness and Rao’s quadratic entropy responded similarly to climate and human pressures. In conclusion, climate is the most influential factor in shaping both the functional diversity and species richness patterns of amphibians, reptiles, and mammals in Europe. However, incorporating factors reflecting human pressures complementary to climate could be conducive to us understanding the drivers of functional diversity and richness patterns.


Sign in / Sign up

Export Citation Format

Share Document