Consistent focal cerebral ischemia without posterior cerebral artery occlusion and its real-time monitoring in an intraluminal suture model in mice

2012 ◽  
Vol 116 (3) ◽  
pp. 657-664 ◽  
Author(s):  
Yosuke Akamatsu ◽  
Hiroaki Shimizu ◽  
Atsushi Saito ◽  
Miki Fujimura ◽  
Teiji Tominaga

Object In the intraluminal suture model of middle cerebral artery occlusion (MCAO) in the mouse, disturbance of blood flow from the internal carotid artery to the posterior cerebral artery (PCA) may affect the size of the infarction. In this study, PCA involvement in the model was investigated and modified for consistent MCAO without involving the PCA territory. Methods Thirty-seven C57Bl/6 mice were randomly divided into 4 groups according to the length of coating over the tip of the suture (1, 2, 3, or 4 mm) and subjected to transient MCAO for 2 hours. Real-time topographical cerebral blood flow was monitored over both hemispheres by laser speckle flowmetry. After 24 hours of reperfusion, the infarct territories and volumes were evaluated. Results The 1- and 2-mm coating groups showed all lesions in the MCA territory. In the 3- and 4-mm coating groups, 62.5% and 75% of mice, respectively, showed lesions in both the MCA and the PCA territories and other lesions in the MCA territory. Mice in the 1- and 2-mm coating groups had significantly smaller infarct volumes than the 3- and 4-mm groups. Laser speckle flowmetry was useful to distinguish whether the PCA territory would undergo infarction. Conclusions Small changes in the coating length of the intraluminal suture may be critical, and 1–2 mm of coating appeared to be optimal to produce consistent MCAO without involving the PCA territory. Laser speckle flowmetry could predict the territory of infarction and improve the consistency of the infarct size.

2009 ◽  
Vol 30 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Qingmin Guo ◽  
Guangming Wang ◽  
Shobu Namura

Fibrates, one group of peroxisome proliferator-activated receptor (PPAR) activators, are lipid lowering drugs. Fibrates have been shown to attenuate brain tissue injury after focal cerebral ischemia. In this study, we investigated the impact of fenofibrate on cerebral blood flow (CBF) in male wild type and PPARα-null mice. Animals were treated for 7 days with fenofibrate and subjected to 2 h of filamentous middle cerebral artery occlusion and reperfusion under isoflurane anesthesia. Cortical surface CBF was measured by laser speckle imaging. Regional CBF (rCBF) in nonischemic animals was measured by 14C-iodoantipyrine autoradiography. Fenofibrate did not affect rCBF and mean arterial blood pressure in nonischemic animals. In ischemic animals, laser speckle imaging showed delayed expansions of ischemic area, which was attenuated by fenofibrate. Fenofibrate also enhanced CBF recovery after reperfusion. However, such effects of fenofibrate on CBF in the ischemic brain were not observed in PPARα-null mice. These findings show that fenofibrate improves CBF in the ischemic hemisphere. Moreover, fenofibrate requires PPARα expression for the cerebrovascular protective effects in the ischemic brain.


1989 ◽  
Vol 257 (5) ◽  
pp. H1656-H1662
Author(s):  
M. Anwar ◽  
H. R. Weiss

The effects of adenosine on regional cerebral blood flow and indexes of the total and perfused microvascular bed were studied after 1 h of middle cerebral artery occlusion in the anesthetized rat. Iodo[14C]antipyrine was used to determine cerebral blood flow. Fluorescein isothiocyanate-dextran was used to study the perfused microvasculature, and an alkaline phosphatase stain was used to identify the total bed. Mean arterial blood pressure was significantly reduced by adenosine. Cerebral blood flow increased significantly by 75%, except in the flow-restricted cortex where flow averaged 28 +/- 15 (SD) ml.min-1.100 g-1 in control and 34 +/- 33 ml.min-1.100 g-1 in adenosine-treated animals. No significant regional structural differences were observed within the microvascular beds of the two groups. The percentage of the microvascular volume perfused increased significantly in all brain regions in the adenosine-treated rats, including the flow-restricted cortex. The percent perfused arteriolar volume in the flow-restricted cortex was 30 +/- 12% in control and 95 +/- 3% in adenosine-treated animals. Similar values for the capillary bed were 22 +/- 10% in control and 54 +/- 3% in adenosine-treated rats. These results indicate a maintenance of flow with a reduction in diffusion distances in the flow-restricted cortex after treatment with adenosine.


2018 ◽  
Vol 314 (5) ◽  
pp. H967-H977 ◽  
Author(s):  
Jennifer A. Shearer ◽  
Susan J. Coker ◽  
Hilary V. O. Carswell

2-Arachidonoylglycerol (2-AG) is a major modulator of blood flow and platelet aggregation and a potential neuroprotectant. The present study investigated, for the first time, the effects of 2-AG on cerebral blood flow (CBF) in the first critical hours during middle cerebral artery occlusion (MCAO) and on platelet aggregation in rats. Adult male Sprague-Dawley rats ( n = 30) underwent permanent MCAO under isoflurane anesthesia and were randomly assigned to receive either 2-AG (6 mg/kg iv), monoacylglycerol lipase inhibitor JZL-184 (10 mg/kg iv), or vehicle ( n = 6 rats/group) treatment. CBF and cardiovascular responses were measured, by a blinded investigator, for up to 4 h. In separate experiments, platelet aggregation by 2-AG (19–300 µM) was assessed by whole blood aggregometry ( n = 40). 2-AG and JZL-184 significantly increased the severity of the CBF deficit versus vehicle (20.2 ± 8.8% and 22.7 ± 6.4% vs. 56.4 ± 12.1% of pre-MCAO baseline, respectively, P < 0.05) but had no effect on blood pressure or heart rate. While JZL-184 significantly increased the number of thrombi after MCAO, this did not reach significance by 2-AG. 2-AG induced platelet aggregation in rat whole blood in a similar manner to arachidonic acid and was significantly reduced by the cyclooxygenase inhibitors indomethacin and flurbiprofen and the thromboxane receptor antagonist ICI 192,605 ( P < 0.05). This is the first study showing that 2-AG increases the severity of the CBF deficit during MCAO, and further interrogation confirmed 2-AG-induced platelet aggregation in rats. These findings are important because 2-AG had previously been shown to exert neuroprotective actions and therefore force us to reevaluate the circumstances under which 2-AG is beneficial. NEW & NOTEWORTHY 2-Arachidonoylglycerol (2-AG) has neuroprotective properties; however, the present study revealed that 2-AG increases the severity of the cerebral blood flow deficit during middle cerebral artery occlusion in rats. Further interrogation showed that 2-AG induces platelet aggregation in rats. These findings force us to reevaluate the circumstances under which 2-AG is beneficial.


1981 ◽  
Vol 1 (1) ◽  
pp. 61-69 ◽  
Author(s):  
A. Tamura ◽  
D. I. Graham ◽  
J. McCulloch ◽  
G. M. Teasdale

Local cerebral blood flow has been measured by quantitative autoradiography, employing [14C]iodoantipyrine as tracer, in rats killed half an hour after occlusion of the middle cerebral artery. The results were compared with pattern of local cerebral blood flow (CBF) in sham-operated rats and with neuropathological findings. In every animal there was a profound reduction (to 13% of control levels) in blood flow in the neocortex previously supplied by the occluded artery. The level of blood flow in the areas in which ischaemic brain damage occurred was 0.24 ±0.03 ml g−1 min−1 (mean ± SEM). This level of CBF is considerably greater than that reported following a similar surgical procedure in cats and primates. Moderate reductions in blood flow were also seen outside the territory of the occluded artery and in parts of the opposite hemisphere. Absolute increases in blood flow (hyperaemia) were seen only in the substantia nigra and globus pallidus ipsilateral to the occlusion. It is suggested that this finding and the reductions in blood flow outside the territory of the middle cerebral artery are reflections of alterations in neuronal function and metabolic activity secondary to the ischaemic lesion.


Sign in / Sign up

Export Citation Format

Share Document