Cerebrospinal fluid lactate and electrolyte levels following experimental spinal cord injury

1976 ◽  
Vol 44 (6) ◽  
pp. 715-722 ◽  
Author(s):  
Douglas K. Anderson ◽  
Leon D. Prockop ◽  
Eugene D. Means ◽  
Lawrence E. Hartley

✓ Cerebrospinal fluid (CSF) lactate, sodium (Na+), potassium (K+), calcium (Ca++), magnesium (Mg++), and chloride (Cl−) levels were determined for 17 to 21 days following experimental spinal cord compression in cats. Laminectomies were performed at L-2 under general anesthesia with aseptic techniques. Paraplegia was produced by applying a 170-gm weight transdurally for 5 minutes. Significant increases in CSF lactate levels were observed on the first through ninth days post injury with peak levels (50% above normal) occurring at Day 5. The only significant postinjury CSF electrolyte changes were elevation in Ca++ concentration on Days 3, 9, 11, 13, and 15, elevation in K+ concentration on Days 9 and 11 and decline in Cl− levels on the first day. The CSF K+ increase probably reflected cellular loss of K+ from damaged tissue whereas the Ca++ rise may have resulted from increased CSF protein levels. The prolonged elevation of CSF lactate indicates that tissue hypoxia plays a role in spinal cord compression paralysis, and that there is a continuing hypoxia of metabolically active spinal cord tissue for several days post injury.

2005 ◽  
Vol 3 (4) ◽  
pp. 302-307 ◽  
Author(s):  
Christopher B. Shields ◽  
Y. Ping Zhang ◽  
Lisa B. E. Shields ◽  
Yingchun Han ◽  
Darlene A. Burke ◽  
...  

Object. There are no clinically based guidelines to direct the spine surgeon as to the proper timing to undertake decompression after spinal cord injury (SCI) in patients with concomitant stenosis-induced cord compression. The following three factors affect the prognosis: 1) severity of SCI; 2) degree of extrinsic spinal cord compression; and 3) duration of spinal cord compression. Methods. To elucidate further the relationship between varying degrees of spinal stenosis and a mild contusion-induced SCI (6.25 g-cm), a rat SCI/stenosis model was developed in which 1.13- and 1.24-mm-thick spacers were placed at T-10 to create 38 and 43% spinal stenosis, respectively. Spinal cord damage was observed after the stenosis—SCI that was directly proportional to the duration of spinal cord compression. The therapeutic window prior to decompression was 6 and 12 hours in the 43 and 38% stenosis—SCI lesions, respectively, to maintain locomotor activity. A significant difference in total lesion volume was observed between the 2-hour and the delayed time(s) to decompression (38% stenosis—SCI, 12 and 24 hours, p < 0.05; 43% stenosis—SCI, 24 hours, p < 0.05) indicating a more favorable neurological outcome when earlier decompression is undertaken. This finding was further supported by the animal's ability to support weight when decompression was performed by 6 or 12 hours compared with 24 hours after SCI. Conclusions. Analysis of the findings in this study suggests that early decompression in the rat improves locomotor function. Prolongation of the time to decompression may result in irreversible damage that prevents locomotor recovery.


2011 ◽  
Vol 15 (1) ◽  
pp. 97-106 ◽  
Author(s):  
Marina Boido ◽  
Diego Garbossa ◽  
Alessandro Vercelli

Object Spinal cord injury (SCI) often results in irreversible and permanent neurological deficits below the injury site and is considered a pathological state of functional damage to local neurons and axon fibers. There are several experimental treatments to minimize tissue damage, and recently cell transplantation has emerged as a promising approach in spinal cord repair. The authors undertook this study to evaluate grafting of neural tube precursors as a possible therapeutic strategy in a model of spinal cord compression in the mouse. Methods Compression SCI was induced at the T-13 level in adult male mice. Immediately after injury, neural precursor cells (NPs) were transplanted into the SCI lesion cavity in 18 mice; the remaining 19 mice received saline injections into the lesion cavity and were used as controls. Spinal cords were examined 12, 19, and 26 days postinjury to investigate the survival of the NPs and their effects on the cellular environment, glial scar and glial cyst formation, astrogliosis, and microglial activation. Results Grafted NPs survived well and integrated into the host spinal cord tissue. Some NPs had differentiated into cells expressing glial and neuronal markers at all 3 end points. Analysis of glial cyst volume showed a lesion volume reduction of 63.2% in the NP-treated mice compared with volume in the injured but untreated mice. There appeared to be no difference in astroglial and microglial activation between untreated mice and treated ones. Sensory and motor tests demonstrated that transplantation of NPs promoted improvement in injured and treated animals compared with controls. Conclusions These results support the therapeutic potential of NPs, demonstrating that they can survive for a long time, differentiate, integrate into the injured spinal cord, and promote functional recovery after SCI.


2016 ◽  
Vol 30 (3) ◽  
pp. 316-320
Author(s):  
A.St. Iencean ◽  
A. Tascu ◽  
St. M. Iencean

Abstract The phosphorylated form of the high-molecular-weight neurofilament subunit NF-H (pNF-H) in serum or in cerebro-spinal fluid (CSF) is a specific lesional biomarker for spinal cord injury. The lesional biomarkers and the reaction biomarkers are both presented after several hours post-injury. The specific predictive patterns of lesional biomarkers could be used to aid clinicians with making a diagnosis and establishing a prognosis, and evaluating therapeutic interventions. Diagnosis, prognosis, and treatment guidance based on biomarker used as a predictive indicator can determine ethical difficulties by differentiated therapies in patients with spinal cord compression. At this point based on studies until today we cannot take a decision based on biomarker limiting the treatment of neurological recovery in patients with complete spinal cord injury because we do not know the complexity of the biological response to spinal cord compression.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Huiyuan Ji ◽  
Yuxin Zhang ◽  
Chen Chen ◽  
Hui Li ◽  
Bingqiang He ◽  
...  

Abstract Background Astrocytes are the predominant glial cell type in the central nervous system (CNS) that can secrete various cytokines and chemokines mediating neuropathology in response to danger signals. D-dopachrome tautomerase (D-DT), a newly described cytokine and a close homolog of macrophage migration inhibitory factor (MIF) protein, has been revealed to share an overlapping function with MIF in some ways. However, its cellular distribution pattern and mediated astrocyte neuropathological function in the CNS remain unclear. Methods A contusion model of the rat spinal cord was established. The protein levels of D-DT and PGE2 synthesis-related proteinase were assayed by Western blot and immunohistochemistry. Primary astrocytes were stimulated by different concentrations of D-DT in the presence or absence of various inhibitors to examine relevant signal pathways. The post-injury locomotor functions were assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. Results D-DT was inducibly expressed within astrocytes and neurons, rather than in microglia following spinal cord contusion. D-DT was able to activate the COX2/PGE2 signal pathway of astrocytes through CD74 receptor, and the intracellular activation of mitogen-activated protein kinases (MAPKs) was involved in the regulation of D-DT action. The selective inhibitor of D-DT was efficient in attenuating D-DT-induced astrocyte production of PGE2 following spinal cord injury, which contributed to the improvement of locomotor functions. Conclusion Collectively, these data reveal a novel inflammatory activator of astrocytes following spinal cord injury, which might be beneficial for the development of anti-inflammation drug in neuropathological CNS.


1975 ◽  
Vol 43 (4) ◽  
pp. 483-485 ◽  
Author(s):  
Abdel A. Ammoumi ◽  
Joanna H. Sher ◽  
Daniel Schmelka

✓ The authors report a patient with sickle cell anemia who suffered from paraplegia of 18 months duration due to spinal cord compression by a hemopoietic mass. Recovery following removal of the mass was complete.


Author(s):  
Andrew C. Smith ◽  
Denise R. O’Dell ◽  
Wesley A. Thornton ◽  
David Dungan ◽  
Eli Robinson ◽  
...  

Background: Using magnetic resonance imaging (MRI), widths of ventral tissue bridges demonstrated significant predictive relationships with future pinprick sensory scores, and widths of dorsal tissue bridges demonstrated significant predictive relationships with future light touch sensory scores, following spinal cord injury (SCI). These studies involved smaller participant numbers, and external validation of their findings is warranted. Objectives: The purpose of this study was to validate these previous findings using a larger independent data set. Methods: Widths of ventral and dorsal tissue bridges were quantified using MRI in persons post cervical level SCI (average 3.7 weeks post injury), and pinprick and light touch sensory scores were acquired at discharge from inpatient rehabilitation (average 14.3 weeks post injury). Pearson product-moments were calculated and linear regression models were created from these data. Results: Wider ventral tissue bridges were significantly correlated with pinprick scores (r = 0.31, p &lt; 0.001, N = 136) and wider dorsal tissue bridges were significantly correlated with light touch scores (r = 0.31, p &lt; 0.001, N = 136) at discharge from inpatient rehabilitation. Conclusion: This retrospective study’s results provide external validation of previous findings, using a larger sample size. Following SCI, ventral tissue bridges hold significant predictive relationships with future pinprick sensory scores and dorsal tissue bridges hold significant predictive relationships with future light touch sensory scores.


2013 ◽  
Vol 14 (3) ◽  
pp. 329 ◽  
Author(s):  
Wook-Hun Chung ◽  
Jae-Hoon Lee ◽  
Dai-Jung Chung ◽  
Wo-Jong Yang ◽  
A-Jin Lee ◽  
...  

1995 ◽  
Vol 82 (1) ◽  
pp. 125-127 ◽  
Author(s):  
David G. Porter ◽  
Andrew J. Martin ◽  
Conor L. Mallucci ◽  
Catherine N. Makunura ◽  
H. Ian Sabin

✓ The authors present the case of spinal cord compression in a 16-year-old boy due to the rare vascular lesion, Masson's vegetant hemangioendothelioma.


Spine ◽  
2012 ◽  
Vol 37 (17) ◽  
pp. 1448-1455 ◽  
Author(s):  
Kensuke Kubota ◽  
Hirokazu Saiwai ◽  
Hiromi Kumamaru ◽  
Kazu Kobayakawa ◽  
Takeshi Maeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document