Inhibition of Cerebrospinal Fluid Formation by a Carbonic Anhydrase Inhibitor, 2-Acetylamino-1, 3, 4-Thiadiazole-5-Sulfonamide (Diamox).

1954 ◽  
Vol 87 (2) ◽  
pp. 373-376 ◽  
Author(s):  
R. D. Tschirgi ◽  
R. W. Frost ◽  
J. L. Taylor
1992 ◽  
Vol 262 (5) ◽  
pp. R909-R914 ◽  
Author(s):  
C. E. Johanson ◽  
Z. Parandoosh ◽  
M. L. Dyas

The carbonic anhydrase inhibitor acetazolamide is useful for analyzing ion transport, pH regulation, and fluid formation in developing central nervous system. We used the 14C-labeled dimethadione technique to measure alterations in steady-state pH, and to estimate the HCO3 concentration [HCO3], in choroid plexus (CP), cerebrospinal fluid (CSF), and cerebral cortex of 1- and 3-wk-old Sprague-Dawley rats treated with acetazolamide or probenecid. These drugs can suppress transport of HCO3 and other anions in some cells, consequently altering intracellular pH. In 1-wk-old infant rats whose CSF secretory process is incompletely developed, 1 h of acetazolamide treatment did not significantly change CP intracellular pH or [HCO3]. However, in 3-wk-old rats, in which the ability of CP to secrete ions and fluids is almost fully developed, acetazolamide caused marked increases in CP cell intracellular pH and [HCO3]. In contrast, acetazolamide-induced alkalinization was not observed in CSF or cerebral cortex of the 1- and 3-wk-old animals. The other test agent, probenecid (an inhibitor of anion transport but not of carbonic anhydrase), did not alter the pH of any region at any age investigated. Overall, the results are interpreted in light of developmental changes in carbonic anhydrase and previous findings from kinetic analyses of ion-translocating systems in CP. Acetazolamide may interfere with a CP apical membrane HCO3 extrusion mechanism not fully operational in infant rats.


1979 ◽  
Vol 47 (3) ◽  
pp. 471-477 ◽  
Author(s):  
T. H. Maren

The effects of elevated plasma CO2 partial pressure (PCO2) and [HCO3-] on cerebrospinal fluid (CSF) HCO3- accession have been reviewed in the context of the basal route of CSF HCO3- formation. The basal rate of 53 mM/h appears to be a consequence entirely of formation, via the reaction CO2 + OH- leads to HCO3-. Two-thirds of this rate is catalyzed by carbonic anhydrase, and the remainder uncatalyzed. The HCO3- accession matches 37% that of sodium, so that the HCO3- rate is involved with CSF turnover. When PCO2 is elevated twofold, the rate of HCO3- formation increase 10%, and results in elevation of CSF [HCO3-] by 5 mM in 1 h. Also, when plasma [HCO3-] is elevated 15 mM, CSF [HCO3-] rises about 5 mM/h; this is transfer of HCO3- “as such” by diffusion from plasma. The effects of hypercapnia and metabolic alkalosis on CSF HCO3- accumulation are additive, but they occur by separate processes. The effect of hypercapnia is an exaltation of the normal process due to increased substrate (CO2), but that of increased plasma HCO3- is due to imposition of an abnormal diffusion gradient for this ion between plasma and CSF. The effect of hypercapnia in elevating brain HCO3- operates to maintain brain pH and is also based on the formation of HCO3- from CO2. Brain HCO3- may also be a source of CSF HCO3-. Relations have been sought between the chemically calculated rates of HCO3- formation in CSF and those observed. The chemically calculated catalytic rate is 1,600 times greater than that observed, agreeing with the fact that more than 99.9% of choroid plexus carbonic anhydrase must be inhibited to yield a decrease in fluid formation or ion transport from plasma to CSF. The calculated uncatalyzed rate agrees closely with what is observed after complete inhibition of the enzyme. These considerations support the idea that all the HCO3- reaching the CSF is formed from CO2, rather than by transfer of the ion from plasma to CSF.


1955 ◽  
Vol 29 (2) ◽  
pp. 262-279 ◽  
Author(s):  
David A. Dreiling ◽  
Henry D. Janowitz ◽  
Mark Halpern

Author(s):  
Silvia A. Teixeira ◽  
Mariano S. Viapiano ◽  
Augusto F. Andrade ◽  
Mohan S. Nandhu ◽  
Julia A. Pezuk ◽  
...  

2019 ◽  
Vol 55 (40) ◽  
pp. 5720-5723 ◽  
Author(s):  
Andrea Angeli ◽  
Marta Ferraroni ◽  
Alessio Nocentini ◽  
Silvia Selleri ◽  
Paola Gratteri ◽  
...  

Epacadostat (EPA), a selective indoleamine-2,3-dioxygenase 1 (IDO1) inhibitor, has been investigatedin vitroas a human (h) Carbonic Anhydrase Inhibitor (CAI).


2013 ◽  
Vol 36 (5) ◽  
Author(s):  
Francesca Bellissima ◽  
Fabrizio Carta ◽  
Alessio Innocenti ◽  
Andrea Scozzafava ◽  
Piero Baglioni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document