carbonic anhydrases
Recently Published Documents


TOTAL DOCUMENTS

994
(FIVE YEARS 274)

H-INDEX

70
(FIVE YEARS 9)

2022 ◽  
Vol 23 (2) ◽  
pp. 957
Author(s):  
Franziska Steger ◽  
Johanna Reich ◽  
Werner Fuchs ◽  
Simon K.-M. R. Rittmann ◽  
Georg M. Gübitz ◽  
...  

Strategies for depleting carbon dioxide (CO2) from flue gases are urgently needed and carbonic anhydrases (CAs) can contribute to solving this problem. They catalyze the hydration of CO2 in aqueous solutions and therefore capture the CO2. However, the harsh conditions due to varying process temperatures are limiting factors for the application of enzymes. The current study aims to examine four recombinantly produced CAs from different organisms, namely CAs from Acetobacterium woodii (AwCA or CynT), Persephonella marina (PmCA), Methanobacterium thermoautotrophicum (MtaCA or Cab) and Sulphurihydrogenibium yellowstonense (SspCA). The highest expression yields and activities were found for AwCA (1814 WAU mg−1 AwCA) and PmCA (1748 WAU mg−1 PmCA). AwCA was highly stable in a mesophilic temperature range, whereas PmCA proved to be exceptionally thermostable. Our results indicate the potential to utilize CAs from anaerobic microorganisms to develop CO2 sequestration applications.


2022 ◽  
Author(s):  
Dagne Barbuskaite ◽  
Eva Kjer Oernbo ◽  
Jonathan Henry Wardman ◽  
Trine Lisberg Toft-Bertelsen ◽  
Eller Conti ◽  
...  

Elevated intracranial pressure (ICP) is observed in many neurological pathologies, e.g. hydrocephalus and stroke. This condition is routinely relieved with neurosurgical approaches, since effective and targeted pharmacological tools are still lacking. The carbonic anhydrase inhibitor, acetazolamide (AZE), may be employed to treat elevated ICP. However, its effectiveness is questioned, its location of action unresolved, and its tolerability low. Here, we employed in vivo and ex vivo approaches to reveal the efficacy and mode of action of AZE in the rat brain. The drug effectively reduced the ICP, irrespective of the mode of drug administration and level of anaesthesia. The effect occurred via a direct action on the choroid plexus and an associated decrease in cerebrospinal fluid secretion, and not indirectly via the systemic action of AZE on renal and vascular processes. Upon a single administration, the reduced ICP endured for approximately 10 h post-AZE delivery with no long-term changes of brain water content or choroidal transporter expression. However, a persistent reduction of ICP was secured with repeated AZE administrations throughout the day. Future specific targeting of choroidal carbonic anhydrases may limit the systemic side effects, and therefore enhance the treatment tolerability and effectiveness in select patient groups experiencing elevated ICP.


2022 ◽  
Vol 37 (1) ◽  
pp. 333-338
Author(s):  
Simone Giovannuzzi ◽  
Chad S. Hewitt ◽  
Alessio Nocentini ◽  
Clemente Capasso ◽  
Daniel P. Flaherty ◽  
...  
Keyword(s):  

2021 ◽  
Vol 6 (4) ◽  
pp. 306-309
Author(s):  
Sarvesh Datta Dixit ◽  
Shalini Singh

Carbonic anhydrases, hCAs IX and XII are applied as the markers of progression of the disease in many oxygen deficient tumours and their specially manoeuvred inhibition is directly related to containing the growth of both primary tumours and tumour growth of secondary nature. Ligand-based quantitative structure-activity relationship (QSAR) studies were carried out on curcumin related, sulphonamide derivatives as inhibitors of human trans-membrane carbonic anhydrase isozyme, hCA IX by comparative molecular field similarity analysis (CoMSIA) implemented through the SYBYL package. The capacity of the model to predict coveted compound was evaluated using test set of three compounds. The best model created was found to be of choice as it showed a r2 value of 0.811 and a cross validated coefficient q2 value of 0.617 in tripos CoMSIA hydrophobic region. Results of the present study indicated that hydrophobic region factors play an important role in carbonic anhydrase hCA IX inhibition for compounds.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (11) ◽  
pp. 18-28
Author(s):  
Tanvi V. Wani ◽  
◽  
Mrunmayee P. Toraskar

Carbonic anhydrase II is one of the forms of human α carbonic anhydrases which are ubiquitous metalloenzymes that catalyze inter-conversion of carbon dioxide and water to bicarbonate and proton, overexpression of which leads to disorders such as glaucoma. 2D and 3D Quantitative Structure Activity Relationship studies were carried out on previously synthesized series of sulfanilamide derivatives by VLife MDS software using stepwise variable, multi-linear regression and k-nearest neighbor molecular field analysis methods. 2D-QSAR model depicts contribution of halogens (such as chlorine and fluorine), methylene and oxygen atoms to inhibition of human carbonic anhydrases II activity. Using k-nearest neighbor molecular field analysis method two 3D-QSAR models (model A and B) were generated from which model A was found to be the best validated model with q2 (0.9494), pred_r2 (0.7367) and q2 _ se (0.2037). It displayed the fact that the inhibitory action of sulfanilamide derivatives against human carbonic anhydrases II is influenced by hydrophobicity and electro positivity.


2021 ◽  
Vol 23 (1) ◽  
pp. 231
Author(s):  
Eva Havránková ◽  
Vladimír Garaj ◽  
Šárka Mascaretti ◽  
Andrea Angeli ◽  
Zuzana Soldánová ◽  
...  

A series of 1,3,5-triazinyl aminobenzenesulfonamides substituted by aminoalcohol, aminostilbene, and aminochalcone structural motifs was synthesized as potential human carbonic anhydrase (hCA) inhibitors. The compounds were evaluated on their inhibition of tumor-associated hCA IX and hCA XII, hCA VII isoenzyme present in the brain, and physiologically important hCA I and hCA II. While the test compounds had only a negligible effect on physiologically important isoenzymes, many of the studied compounds significantly affected the hCA IX isoenzyme. Several compounds showed activity against hCA XII; (E)-4-{2-[(4-[(2,3-dihydroxypropyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfonamide (31) and (E)-4-{2-[(4-[(4-hydroxyphenyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfonamide (32) were the most effective inhibitors with KIs = 4.4 and 5.9 nM, respectively. In addition, the compounds were tested against vancomycin-resistant Enterococcus faecalis (VRE) isolates. (E)-4-[2-({4-[(4-cinnamoylphenyl)amino]-6-[(4-hydroxyphenyl)amino]-1,3,5-triazin-2-yl}amino)ethyl]benzenesulfonamide (21) (MIC = 26.33 µM) and derivative 32 (MIC range 13.80–55.20 µM) demonstrated the highest activity against all tested strains. The most active compounds were evaluated for their cytotoxicity against the Human Colorectal Tumor Cell Line (HCT116 p53 +/+). Only 4,4’-[(6-chloro-1,3,5-triazin-2,4-diyl)bis(iminomethylene)]dibenzenesulfonamide (7) and compound 32 demonstrated an IC50 of ca. 6.5 μM; otherwise, the other selected derivatives did not show toxicity at concentrations up to 50 µM. The molecular modeling and docking of active compounds into various hCA isoenzymes, including bacterial carbonic anhydrase, specifically α-CA present in VRE, was performed to try to outline a possible mechanism of selective anti-VRE activity.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12673
Author(s):  
Jinyu Shen ◽  
Zhiyong Li ◽  
Yajuan Fu ◽  
Jiansheng Liang

Carbonic anhydrases (CAs) are ubiquitous zinc metalloenzymes that catalyze the interconversion of carbon dioxide and bicarbonate. Higher plants mainly contain the three evolutionarily distinct CA families αCA, βCA, and γCA, with each represented by multiple isoforms. Alternative splicing (AS) of the CA transcripts is common. However, there is little information on the spliced variants of individual CA isoforms. In this study, we focused on the characterization of spliced variants of βCA1 from Arabidopsis. The expression patterns and subcellular localization of the individual spliced variants of βCA1 were examined. The results showed that the spliced variants of βCA1 possessed different subcellular and tissue distributions and responded differently to environmental stimuli. Additionally, we addressed the physiological role of βCA1 in heat stress response and its protein-protein interaction (PPI) network. Our results showed that βCA1 was regulated by heat stresses, and βca1 mutant was hypersensitive to heat stress, indicating a role for βCA1 in heat stress response. Furthermore, PPI network analysis revealed that βCA1 interacts with multiple proteins involved in several processes, including photosynthesis, metabolism, and the stress response, and these will provide new avenues for future investigations of βCA1.


2021 ◽  
Vol 37 (1) ◽  
pp. 168-177
Author(s):  
Alma Fuentes-Aguilar ◽  
Penélope Merino-Montiel ◽  
Sara Montiel-Smith ◽  
Socorro Meza-Reyes ◽  
José Luis Vega-Báez ◽  
...  

Author(s):  
Francesco Sansone ◽  
Davide Sbravati ◽  
Alessandro Bonardi ◽  
Silvia Bua ◽  
Andrea Angeli ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document