scholarly journals Point Foundation (PF) method: Principles and recent research findings

Author(s):  
Myoung Su Jo ◽  
Ki Tae Lee ◽  
Ho Deok Kang ◽  
Hong Bum Cho ◽  
Tien Dung Nguyen

Conventionally, cement deep mixing (CDM) columns are designed to have constant diameters over the improved depth as this facilitates the construction procedures. However, this design pattern may be inefficient in cases of spread footings or shallow foundations. This paper first briefly introduces principles, construction procedures and quality control techniques of an innovative CDM method that can create head-enlarged column, named as Point Foundation (PF). The method is practically implemented with a specific binder that is environment-friendly and more effective in strength enhancing compared with the common binder as cement. Static load tests on three instrumented PF columns indicate that the variation trend of induced vertical stress profile along the columns in general is similar to that under the centre of shallow footings on elastic soil medium. However, the stress profile in the (semi-rigid) PF columns is larger than that in elastic soil but less than that in (rigid) PHC pile. This confirms the load transfer mechanism along semi-rigid columns like CDM/PF. Test results also indicate that at the depth of one to two times head diameters the induced stress remains just 20% the applied pressure. Findings on the trend of the induced vertical stress in the columns suggests that the settlement of common shallow footings on CDM/PF column-reinforced grounds should be evaluated using 3D condition taking into account the fact that the induced stress decreases with depth. Keywords: ground improvement; Point Foundation (PF); tapered cross section; load transfer mechanism; load-settlement behavior.

2020 ◽  
Vol 222 ◽  
pp. 111088
Author(s):  
Lili Sui ◽  
Shiyong Fan ◽  
Zhenyu Huang ◽  
Wei Zhang ◽  
Yingwu Zhou ◽  
...  

2021 ◽  
Vol 226 ◽  
pp. 111427
Author(s):  
Zhenyu Huang ◽  
Xiaolong Zhao ◽  
Wei Zhang ◽  
Zhanxia Fu ◽  
Yingwu Zhou ◽  
...  

2020 ◽  
Vol 50 (6) ◽  
pp. 871-879
Author(s):  
Hossein Soltani-Jigheh ◽  
Pouya Zahedi

2014 ◽  
Vol 587-589 ◽  
pp. 1391-1394 ◽  
Author(s):  
Chao Yi Yao ◽  
Qian Hui Pu ◽  
Ya Dong Yao

The cable-stayed bridge got rapid development in recent years. And for long-span cable-stayed bridges, the cable-girder anchorage structure is a key component in designing. The function of the cable-girder anchorage structure is to transfer the load between cables and the main girder. With the complex load transfer mechanism and stress concentration induced by large cable force, rational design of cable-girder anchorage structure is critical to long-span cable-stayed bridges. Take a certain long-span railway cable-stayed bridge in Zhejiang Province as the investigation, the load transfer mechanism and the stress distribution state was studied by finite element model. The research indicated that the design of this anchor box was rational. The stress distribution on each plate of the anchor box was relatively uniform. And the load transfer path and mechanisms of the main components of this anchor box were clear.


2011 ◽  
Vol 48 (11) ◽  
pp. 1616-1629
Author(s):  
Arthur K.O. So ◽  
Charles W.W. Ng

Uncertainty exists in signal-matching techniques. The quake and damping obtained may not be the actual response of the soil. In this paper, the final sets, strain gauge readings, pile driving analyzer, and Case pile wave analysis program of 12 high-capacity long H-piles at the end of initial driving as well as two of them at restrike are studied. Measured and deduced data show that the soil response underneath the pile toes has limited movement and yielding despite the piles being set using very heavy hammer rams and large ram drops. The quake and damping decrease with increased shearing strain and shearing stress, but are influenced by pile whipping, rebounded stress wave, and load-transfer mechanism. The lumped Case damping factor decreases with increased side resistance to total resistance ratio. This factor can decrease or increase with time due to changes in the load-transfer mechanism after set-up, thus affecting the proportion of viscous damping of soil along the pile shaft and at the pile toe. A Case damping model is proposed that approximates the lumped Case damping factor as the sum of hysteretic damping of the pile and viscous damping of the surrounding soil. The effects of variation in load distribution and set-up along the pile shaft in layered soils and incomplete mobilization of soil at the pile toe on the Case damping factors are explained.


2015 ◽  
Vol 67 ◽  
pp. 223-228 ◽  
Author(s):  
Dongdong Zhang ◽  
Yaru Lv ◽  
Hanlong Liu ◽  
Mingyang Wang

Sign in / Sign up

Export Citation Format

Share Document