scholarly journals On the Value Function of a Differential Game with Simple Dynamics and Piecewise Linear Data*

2009 ◽  
Vol 42 (2) ◽  
pp. 140-143
Author(s):  
Lyubov G. Shagalova
Author(s):  
Lyubov Gennad’evna Shagalova

An antagonistic positional differential game of two persons is considered. The dynamics of the system is described by a differential equation with simple motions, and the payoff functional is integro-terminal. For the case when the terminal function and the Hamiltonian are piecewise linear, and the dimension of the state space is two, a finite algorithm for the exact construction of the value function is proposed.


2003 ◽  
Vol 05 (02) ◽  
pp. 167-189 ◽  
Author(s):  
Ştefan Mirică

We give complete proofs to the verification theorems announced recently by the author for the "pairs of relatively optimal feedback strategies" of an autonomous differential game. These concepts are considered to describe the possibly optimal solutions of a differential game while the corresponding value functions are used as "instruments" for proving the relative optimality and also as "auxiliary characteristics" of the differential game. The 6 verification theorems in the paper are proved under different regularity assumptions accompanied by suitable differential inequalities verified by the generalized derivatives, mainly of contingent type, of the value function.


1992 ◽  
Vol 29 (01) ◽  
pp. 104-115 ◽  
Author(s):  
M. Sun

This paper introduces several versions of starting-stopping problem for the diffusion model defined in terms of a stochastic differential equation. The problem could be regarded as a stochastic differential game in which the player can only decide when to start the game and when to quit the game in order to maximize his fortune. Nested variational inequalities arise in studying such a problem, with which we are able to characterize the value function and to obtain optimal strategies.


1992 ◽  
Vol 29 (1) ◽  
pp. 104-115 ◽  
Author(s):  
M. Sun

This paper introduces several versions of starting-stopping problem for the diffusion model defined in terms of a stochastic differential equation. The problem could be regarded as a stochastic differential game in which the player can only decide when to start the game and when to quit the game in order to maximize his fortune. Nested variational inequalities arise in studying such a problem, with which we are able to characterize the value function and to obtain optimal strategies.


Author(s):  
Yu.V. Averboukh

The paper is concerned with the approximation of the value function of the zero-sum differential game with the minimal cost, i.e., the differential game with the payoff functional determined by the minimization of some quantity along the trajectory by the solutions of continuous-time stochastic games with the stopping governed by one player. Notice that the value function of the auxiliary continuous-time stochastic game is described by the Isaacs–Bellman equation with additional inequality constraints. The Isaacs–Bellman equation is a parabolic PDE for the case of stochastic differential game and it takes a form of system of ODEs for the case of continuous-time Markov game. The approximation developed in the paper is based on the concept of the stochastic guide first proposed by Krasovskii and Kotelnikova.


1988 ◽  
Vol 110 ◽  
pp. 163-184 ◽  
Author(s):  
Makiko Nisio

Recently P. L. Lions has demonstrated the connection between the value function of stochastic optimal control and a viscosity solution of Hamilton-Jacobi-Bellman equation [cf. 10, 11, 12]. The purpose of this paper is to extend partially his results to stochastic differential games, where two players conflict each other. If the value function of stochatic differential game is smooth enough, then it satisfies a second order partial differential equation with max-min or min-max type nonlinearity, called Isaacs equation [cf. 5]. Since we can write a nonlinear function as min-max of appropriate affine functions, under some mild conditions, the stochastic differential game theory provides some convenient representation formulas for solutions of nonlinear partial differential equations [cf. 1, 2, 3].


Sign in / Sign up

Export Citation Format

Share Document