THE VALUE FUNCTION OF A DIFFERENTIAL GAME WITH SIMPLE MOTIONS AND AN INTEGRO-TERMINAL COST

Author(s):  
Lyubov Gennad’evna Shagalova

An antagonistic positional differential game of two persons is considered. The dynamics of the system is described by a differential equation with simple motions, and the payoff functional is integro-terminal. For the case when the terminal function and the Hamiltonian are piecewise linear, and the dimension of the state space is two, a finite algorithm for the exact construction of the value function is proposed.

1992 ◽  
Vol 29 (01) ◽  
pp. 104-115 ◽  
Author(s):  
M. Sun

This paper introduces several versions of starting-stopping problem for the diffusion model defined in terms of a stochastic differential equation. The problem could be regarded as a stochastic differential game in which the player can only decide when to start the game and when to quit the game in order to maximize his fortune. Nested variational inequalities arise in studying such a problem, with which we are able to characterize the value function and to obtain optimal strategies.


2006 ◽  
Vol 08 (02) ◽  
pp. 219-229 ◽  
Author(s):  
PIERRE BERNHARD

We investigate an impulse control differential game arising in a problem of option pricing in mathematical finance. In a previous paper, it was shown that its Value function in ℝ3 could be described as a pair of functions affine in one of the variables, joined on a 2D manifold. Depending on the regions of the state space, this manifold is either a dispersal one, an equivocal one or a 2D focal manifold. A pair of PDE's were derived for the focal part. Here we show that irrespective of the nature of this manifold, it has to satisfy this same set of PDE's.


1992 ◽  
Vol 29 (1) ◽  
pp. 104-115 ◽  
Author(s):  
M. Sun

This paper introduces several versions of starting-stopping problem for the diffusion model defined in terms of a stochastic differential equation. The problem could be regarded as a stochastic differential game in which the player can only decide when to start the game and when to quit the game in order to maximize his fortune. Nested variational inequalities arise in studying such a problem, with which we are able to characterize the value function and to obtain optimal strategies.


2020 ◽  
Vol 9 (2) ◽  
pp. 459-470
Author(s):  
Helin Wu ◽  
Yong Ren ◽  
Feng Hu

Abstract In this paper, we investigate some kind of Dynkin game under g-expectation induced by backward stochastic differential equation (short for BSDE). The lower and upper value functions $$\underline{V}_t=ess\sup \nolimits _{\tau \in {\mathcal {T}_t}} ess\inf \nolimits _{\sigma \in {\mathcal {T}_t}}\mathcal {E}^g_t[R(\tau ,\sigma )]$$ V ̲ t = e s s sup τ ∈ T t e s s inf σ ∈ T t E t g [ R ( τ , σ ) ] and $$\overline{V}_t=ess\inf \nolimits _{\sigma \in {\mathcal {T}_t}} ess\sup \nolimits _{\tau \in {\mathcal {T}_t}}\mathcal {E}^g_t[R(\tau ,\sigma )]$$ V ¯ t = e s s inf σ ∈ T t e s s sup τ ∈ T t E t g [ R ( τ , σ ) ] are defined, respectively. Under some suitable assumptions, a pair of saddle points is obtained and the value function of Dynkin game $$V(t)=\underline{V}_t=\overline{V}_t$$ V ( t ) = V ̲ t = V ¯ t follows. Furthermore, we also consider the constrained case of Dynkin game.


2014 ◽  
Vol 17 (08) ◽  
pp. 1450055
Author(s):  
Fabian Astic ◽  
Agnès Tourin

We propose a framework for analyzing the credit risk of secured loans with maximum loan-to-value covenants. Here, we do not assume that the collateral can be liquidated as soon as the maximum loan-to-value is breached. Closed-form solutions for the expected loss are obtained for nonrevolving loans. In the revolving case, we introduce a minimization problem with an objective function parameterized by a risk reluctance coefficient, capturing the trade-off between minimizing the expected loss incurred in the event of liquidation and maximizing the interest gain. Using stochastic control techniques, we derive the partial integro-differential equation satisfied by the value function, and solve it numerically with a finite difference scheme. The experimental results and their comparison with a standard loan-to-value-based lending policy suggest that stricter lending decisions would benefit the lender.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Moussa Kounta

We consider the so-called mean-variance portfolio selection problem in continuous time under the constraint that the short-selling of stocks is prohibited where all the market coefficients are random processes. In this situation the Hamilton-Jacobi-Bellman (HJB) equation of the value function of the auxiliary problem becomes a coupled system of backward stochastic partial differential equation. In fact, the value functionVoften does not have the smoothness properties needed to interpret it as a solution to the dynamic programming partial differential equation in the usual (classical) sense; however, in such casesVcan be interpreted as a viscosity solution. Here we show the unicity of the viscosity solution and we see that the optimal and the value functions are piecewise linear functions based on some Riccati differential equations. In particular we solve the open problem posed by Li and Zhou and Zhou and Yin.


2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Axel Anderson

This paper characterizes the behavior of value functions in dynamic stochastic discounted programming models near fixed points of the state space. When the second derivative of the flow payoff function is bounded, the value function is proportional to a linear function plus geometric term. A specific formula for the exponent of this geometric term is provided. This exponent continuously falls in the rate of patience.If the state variable is a martingale, the second derivative of the value function is unbounded. If the state variable is instead a strict local submartingale, then the same holds for the first derivative of the value function. Thus, the proposed approximation is more accurate than Taylor series approximation.The approximation result is used to characterize locally optimal policies in several fundamental economic problems.


2003 ◽  
Vol 05 (02) ◽  
pp. 167-189 ◽  
Author(s):  
Ştefan Mirică

We give complete proofs to the verification theorems announced recently by the author for the "pairs of relatively optimal feedback strategies" of an autonomous differential game. These concepts are considered to describe the possibly optimal solutions of a differential game while the corresponding value functions are used as "instruments" for proving the relative optimality and also as "auxiliary characteristics" of the differential game. The 6 verification theorems in the paper are proved under different regularity assumptions accompanied by suitable differential inequalities verified by the generalized derivatives, mainly of contingent type, of the value function.


Sign in / Sign up

Export Citation Format

Share Document