Vibration Control of Flexible Structures Based on Impedance Matching Index

2011 ◽  
Vol 44 (1) ◽  
pp. 11562-11567
Author(s):  
Kenji Nagase ◽  
Yasuyuki Takeuchi
2011 ◽  
Vol 44 (1) ◽  
pp. 5371-5376 ◽  
Author(s):  
G. Cazzulani ◽  
C. Ghielmetti ◽  
F. Resta ◽  
F. Ripamonti

Author(s):  
Sourav Kundu ◽  
Kentaro Kamagata ◽  
Shigeru Sugino ◽  
Takeshi Minowa ◽  
Kazuto Seto

Abstract A Genetic Algorithm (GA) based approach for solution of optimal control design of flexible structures is presented in this paper. The method for modeling flexible structures with distributed parameters as reduced-order models with lumped parameters, which has been developed previously, is employed. Due to some restrictions on controller design it is necessary to make a reduced-order model of the structure. Once the model is established the design of flexible structures is considered as a feedback search procedure where a new solution is assigned some fitness value for the GA and the algorithm iterates till some satisfactory design solution is achieved. We propose a pole assignment method to determine the evaluation (fitness) function to be used by the GA to find optimal damping ratios in passive elements. This paper demonstrates the first results of a genetic algorithm approach to solution of the vibration control problem for practical control applications to flexible tower-like structures.


Author(s):  
Fumio Doi ◽  
Kazuto Seto ◽  
Mingzhang Ren ◽  
Yuzi Gatate

Abstract In this paper we present an experimental investigation of active vibration control of a scaled bridge tower model under artificial wind excitation. The control scheme is designed on the basis of a reduced order model of the flexible structures using the LQ control theory, with a collocation of four laser displacement sensors and two hybrid electro-magnetic actuators. The experimental results in the wind tunnel show that both the bending and the twisting vibrations covering the first five modes of the structure are controlled well.


Sign in / Sign up

Export Citation Format

Share Document