impedance matching
Recently Published Documents


TOTAL DOCUMENTS

2683
(FIVE YEARS 859)

H-INDEX

49
(FIVE YEARS 12)

2022 ◽  
Vol 20 (2) ◽  
pp. 276-282
Author(s):  
Anna Gabrielle Sahu ◽  
Vinicius B. Ribeiro ◽  
Victor H. C. Gerolamo ◽  
Marcos Sergio Goncalves

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 602
Author(s):  
Jiaying Zhang ◽  
Jin Huang ◽  
Peng Sun ◽  
Fanbo Meng ◽  
Jie Zhang ◽  
...  

With the advent of wearable communication devices, microstrip antennas have developed multiple applications due to their ultra-low-profile properties. Therefore, it is essential to analyze the problem of frequency shift and impedance mismatch when the antenna is bent. For the case of a rectangular patch antenna E-plane bent on the cylindrical surface, (1) this paper introduces the effective dielectric constant into the cavity model, which can accurately predict the resonance frequency of the antenna, and (2) according to the equivalent circuit model of the antenna resonance mode, the lumped element parameters are calculated based on the above effective dielectric constant, so that impedance characteristics and the S-parameter matching the port can be quickly constructed. From the perspective of circuit frequency characteristics, it explains the change in the transmission performance of the curved antenna. The experimental results show that the maximum difference between the experimental and theoretical calculation frequencies is less than 1%. These results verify the validity and applicability of the theory in the analysis of ultra-low-profile patch antennas and wearable electronic communication devices. It provides a theoretical basis for the fast impedance matching of patch antennas under different working conditions.


Author(s):  
Rajib Kumar Dash ◽  
Puspendu Bikash Saha ◽  
Dibyendu Ghoshal ◽  
Gopinath Palai

In this article two fractal geometry-based slotted patch antennas are designed to achieve wideband response with multiband characteristics and reduced cross polarized radiation in both E- and H-plane for all the resonating bands. The proposed antennas are fed with microstrip line feeding formed on a FR4 substrate of size 0.25𝜆0 × 0.25𝜆0 × 0.02𝜆0 mm3 and loaded with a partial ground plane at the bottom of the substrate. HFSS is used to design and simulate both the antennas. Wideband behavior and impedance matching of Antenna-1 are improved by optimizing the factor of iteration and length of the ground plane. Due to addition of 3 identical split ring resonators (SRR) with the antenna geometry leads to achieve multiband response in Antenna-2. The dimensions of the SRR connectors and feedline have been optimized through parametric analysis to match the impedance properly at all the three resonating bands. It has been found that simulated and measurement results of both the antennas are properly matched.


Author(s):  
Soumik Dey ◽  
Sukomal Dey

Abstract This paper presents a broadband miniaturized Fabry–Perot cavity resonator antenna (CRA) made of novel electromagnetic bandgap (EBG) superstrate as partially reflecting surface (PRS) and reactive impedance surface (RIS) backed rectangular patch antenna. To the best of the authors' knowledge, the proposed EBG exhibits the highest stopband bandwidth (BW) with a bandgap existing between 7.37 and 12.4 GHz (50.9%). Frequency-selective property of the EBG is utilized under plane wave incidence to demonstrate it as PRS superstrate in CRA antenna. The cavity is excited with a rectangular microstrip antenna which is made of two dielectric substrates with an additional RIS layer sandwiched between them. The RIS provides wideband impedance matching of the primary feed antenna. A 7 × 7 array of the EBG superstrate is loaded over the patch antenna having an overall lateral dimension of only 45 × 45 mm2 or 1.62 λ0 × 1.62 λ0 where λ0 is the free space wavelength at the center frequency of 10.8 GHz. The proposed Fabry–Perot CRA (FP-CRA) achieves gain enhancement of 6.59 dB as compared with the reference antenna and has a 10 dB return loss BW of 23.79% from 10.07 to 12.79 GHz. A prototype of the FP-CRA is fabricated and experimentally tested with single and dual layers of EBG superstrate. Measured results show BWs of 21.5 and 24.8% for the two cases with peak realized gain of 12.05 and 14.3 dBi, respectively. Later a four-element antenna array with corporate feeding is designed as the primary feed of the CRA. The simulation result shows a flat gain of >13 dBi with gain variation <1.2 dB over the impedance BW of 13.2%.


2022 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Qasim Awais ◽  
Asad Farooq ◽  
Waqas Ali ◽  
Reshal Afzal ◽  
Adeel Khalid

Conversion of electric power from a high voltage to a low voltage causes power losses that also require efficient circuit design techniques to be implemented for durability of a system. Energy harvesting techniques have been implemented to cater to the power demand of low power electronic devices using electromagnetic, electrostatic, and other related technologies. This paper represents the compact design of an antenna system tuned at 2.45 GHz for radio frequency energy harvesting applications. The simulation results achieve a better gain of 5.4 dB along with enhanced radiation patterns. Impedance matching for 50 Ohm is implemented using a high frequency structure simulator (HFSS). The results of the antenna gain, VSWR, and radiation efficiency are compared with the literature. Furthermore, the size of the antenna system has great significance in medical and military related applications; this aspect is also considered in this design and overall, a 20 mm × 37 mm compact antenna is achieved by using mm wave considerations. This antenna design can be embedded in the wireless sensor network (WSN), RFID, and IoT related application to generate the required power required. Mostly, WSN nodes currently use traditional batteries that need to be replaced after some time. As in most cases, WSN nodes are scattered in wide geographical areas, so maintaining the power to these systems becomes challenging. RF energy harvesting provides a solution in these cases where wind, vibration, and solar sources are scarce. The simulated impedance bandwidth is found to range from 1.1 GHz to 5.2 GHz within the acceptable VSWR values.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Wei Xu ◽  
Jingchang Nan ◽  
Mingming Gao

A compact circularly polarized (CP) antenna is proposed for low-profile and wideband operation based on characteristic mode analysis (CMA). A ring patch with a gap and two arc-shaped metallic stubs as the radiator is analyzed and optimized by CMA to figure out the orthogonal modes and operating frequency band for potential good axial ratio (AR) performance. The studies of these CP modes provide a physical insight into the property of broadband circular polarization. Such an in-depth understanding paves the way for the proposal of novel CP antenna with separation between the design of radiator and feeding network. A 50-Ω coplanar waveguide (CPW) is introduced and placed appropriately to excite the desired modes based on the information from CMA, which employs two asymmetric ground planes to improve the performance in terms of AR and impedance matching. The antenna with a compact size of 0.71λ0 × 0.76λ0 × 0.038λ0 (λ0 is the free-space wavelength at the center frequency of the 3-dB AR bandwidth) is fabricated and measured for validation. The realized gain varies from 1.6 to 3.1 dBic over the operating bandwidth characterized by the measured 10-dB impedance bandwidth of 83.8% (3.98–9.72 GHz) and 3-dB AR bandwidth of 70.3% (4.59–9.57 GHz), respectively.


Author(s):  
Jiamao Gao ◽  
Shimin Yu ◽  
Hao Wu ◽  
Yu Wang ◽  
Zhijiang Wang ◽  
...  

Abstract Matching networks are of vital importance for capacitively coupled plasmas to maximize the power transferred to the plasma discharge. The nonlinear interaction between the external circuit and plasma has to be considered to design suitable matching networks. To study the effect of the matching circuit, we coupled PIC/MC model and nonlinear circuit equations based on Kirchhoff’s laws, in a fully nonlinear and self-consistent way. The single-frequency capacitively coupled discharge with ”L”-Type matching networks are simulated. Fully self-consistently results of circuit and plasma parameters are presented and then power absorbed by the plasma and efficiency are calculated. With the tune of the matching network, the efficiency can reach 28.7 %, leading to higher potential as well as higher electron density at fixed source voltage. Besides, only very small components of the third harmonics are found in the plasma voltage and current while surface charge densities have multiple harmonics on account of the strong plasma nonlinearity. Finally, the effects of matching capacitors on discharge are analyzed, results show that smaller Cm1 and Cm2 of 500 pF to 1000 pF may be a proper choice for better matching, resulting in higher voltage across the CCP, and thus higher electron density and power absorption efficiency are obtained.


2022 ◽  
Author(s):  
Wataru HIJIKATA ◽  
Toshiki Ohori ◽  
Xiang Li ◽  
Hideyuki Nakanishi ◽  
Shigeki Ozawa

Abstract Wireless power transfer via magnetic resonant coupling can be used to supply power to a mobile robot within a few meters of a transmitter coil. However, when the robot moves or its power consumption fluctuates, its input impedance varies and causes power reflection. Therefore, we propose the use of a driver coil on the transmitter side to match the input impedance. The input impedance is matched and power reflection is eliminated by regulating the coupling coefficient between the driver and the transmitter. During experiments, the transmitting efficiency showed good agreement with the calculated value, and the input impedance was matched under varying distances and load resistances. Therefore, the proposed system was demonstrated to solve the power reflection problem in mobile robots.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 194
Author(s):  
Jungwoo Lee ◽  
Jinhyuk Kim

In our prior study, a systematic approach was used to devise Langevin transducers for high-power applications where the energy efficiency was not considered in the design criteria. In this paper, the impedance matching methods are thus proposed to evaluate what matching topology is appropriate for their use. Both the series inductor scheme and low pass filter composed of a series inductor and shunt capacitor are examined as matching circuits. According to MATLAB simulation, the resonance frequency is seen at 36.79 kHz due to a series L circuit, and its associated impedance is reduced by 70.45% from that of its non-matching condition. The measured resonance frequency is 36.77 kHz and the corresponding impedance is decreased by 59.52%. Furthermore, the acoustic pressure is measured to determine the effect of the matching circuit on the transducer’s actual behavior. The transducer with a series L circuit shows more efficient matching results, 2.28 kPa of positive acoustic pressure is emitted without matching and 3.35 kPa is emitted with a series L element, respectively. As a result, this study demonstrates how to evaluate the influence of matching circuits by using our customized approach rather than commercial SPICE programs, as well as how to experimentally verify the acoustic behavior of high-power Langevin transducers.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yang Feng ◽  
Zhaonan Li ◽  
Lin Qi ◽  
Wanting Shen ◽  
Gaosheng Li

AbstractA tiny and compact implantable antenna for wireless cardiac pacemaker systems is designed. The antenna works in the Industrial Scientific Medical (ISM) frequency band (2.4–2.48 GHz). The size of the antenna is greatly reduced with the adoption of a high dielectric constant medium and a folded meander structure. The volume of the antenna is 4.5 mm3, and the size is only 3 mm × 3 mm × 0.5 mm. Based on the literature research, it was found that the design was the smallest among the same type of implanted antenna. The antenna is optimized and loaded with a defective slotted structure, which improves the efficiency of the overall performance of the antenna and thus the gain thereof. The antenna maintains good impedance matching in the ISM frequency band, covering the entire ISM frequency band. The actual bandwidth of the antenna is 22%, with the peak gain of − 24.9 dBi. The antenna is processed and manufactured in such a manner that the simulation keeps consistent with the actual measurement. In addition, the specific absorption rate of the antenna is also evaluated and analyzed. The result shows that this kind of antenna is the best choice to realize the wireless biological telemetry communication in the extremely compact space of the wireless cardiac pacemaker system.


Sign in / Sign up

Export Citation Format

Share Document