scholarly journals On the multiplicity of the second eigenvalue of the Laplacian in non simply connected domains – with some numerics –

2020 ◽  
Vol 121 (1) ◽  
pp. 35-57
Author(s):  
B. Helffer ◽  
T. Hoffmann-Ostenhof ◽  
F. Jauberteau ◽  
C. Léna

We revisit an interesting example proposed by Maria Hoffmann-Ostenhof, the second author and Nikolai Nadirashvili of a bounded domain in R 2 for which the second eigenvalue of the Dirichlet Laplacian has multiplicity 3. We also analyze carefully the first eigenvalues of the Laplacian in the case of the disk with two symmetric cracks placed on a smaller concentric disk in function of their size.

2019 ◽  
Vol 72 (4) ◽  
pp. 1024-1043 ◽  
Author(s):  
Pedro Freitas ◽  
Richard S. Laugesen

AbstractThe second eigenvalue of the Robin Laplacian is shown to be maximal for the disk among simply-connected planar domains of fixed area when the Robin parameter is scaled by perimeter in the form $\unicode[STIX]{x1D6FC}/L(\unicode[STIX]{x1D6FA})$, and $\unicode[STIX]{x1D6FC}$ lies between $-2\unicode[STIX]{x1D70B}$ and $2\unicode[STIX]{x1D70B}$. Corollaries include Szegő’s sharp upper bound on the second eigenvalue of the Neumann Laplacian under area normalization, and Weinstock’s inequality for the first nonzero Steklov eigenvalue for simply-connected domains of given perimeter.The first Robin eigenvalue is maximal, under the same conditions, for the degenerate rectangle. When area normalization on the domain is changed to conformal mapping normalization and the Robin parameter is positive, the maximiser of the first eigenvalue changes back to the disk.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Shusen Yan ◽  
Weilin Yu

<p style='text-indent:20px;'>In this paper, we consider the inviscid, incompressible planar flows in a bounded domain with a hole and construct stationary classical solutions with single vortex core, which is closed to the hole. This is carried out by constructing solutions to the following semilinear elliptic problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1111"> \begin{document}$ \begin{equation} \begin{cases} -\Delta \psi = \lambda(\psi-\frac{\kappa}{4\pi}\ln\lambda)_+^p,\quad &amp;\text{in}\; \Omega,\\ \psi = \rho_\lambda,\quad &amp;\text{on}\; \partial O_0,\\ \psi = 0,\quad &amp;\text{on}\; \partial\Omega_0, \end{cases} \;\;\;\;\;\;\;\;(1)\end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ p&gt;1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ \kappa $\end{document}</tex-math></inline-formula> is a positive constant, <inline-formula><tex-math id="M3">\begin{document}$ \rho_\lambda $\end{document}</tex-math></inline-formula> is a constant, depending on <inline-formula><tex-math id="M4">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ \Omega = \Omega_0\setminus \bar{O}_0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ \Omega_0 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ O_0 $\end{document}</tex-math></inline-formula> are two planar bounded simply-connected domains. We show that under the assumption <inline-formula><tex-math id="M8">\begin{document}$ (\ln\lambda)^\sigma\leq\rho_\lambda\leq (\ln\lambda)^{1-\sigma} $\end{document}</tex-math></inline-formula> for some <inline-formula><tex-math id="M9">\begin{document}$ \sigma&gt;0 $\end{document}</tex-math></inline-formula> small, (1) has a solution <inline-formula><tex-math id="M10">\begin{document}$ \psi_\lambda $\end{document}</tex-math></inline-formula>, whose vorticity set <inline-formula><tex-math id="M11">\begin{document}$ \{y\in \Omega:\, \psi(y)-\kappa+\rho_\lambda\eta(y)&gt;0\} $\end{document}</tex-math></inline-formula> shrinks to the boundary of the hole as <inline-formula><tex-math id="M12">\begin{document}$ \lambda\to +\infty $\end{document}</tex-math></inline-formula>.</p>


2010 ◽  
Vol 348 (9-10) ◽  
pp. 521-524 ◽  
Author(s):  
Stephen J. Gardiner ◽  
Nikolaos Tsirivas

2010 ◽  
Vol 62 (4) ◽  
pp. 808-826
Author(s):  
Eveline Legendre

AbstractWe study extrema of the first and the second mixed eigenvalues of the Laplacian on the disk among some families of Dirichlet–Neumann boundary conditions. We show that the minimizer of the second eigenvalue among all mixed boundary conditions lies in a compact 1-parameter family for which an explicit description is given. Moreover, we prove that among all partitions of the boundary with bounded number of parts on which Dirichlet and Neumann conditions are imposed alternately, the first eigenvalue is maximized by the uniformly distributed partition.


Sign in / Sign up

Export Citation Format

Share Document