Q*-based state abstraction and knowledge discovery in reinforcement learning

2014 ◽  
Vol 18 (6) ◽  
pp. 1153-1175
Author(s):  
Nahid Taherian ◽  
Mohammad Ebrahim Shiri
Author(s):  
Carlos Diuk ◽  
Michael Littman

Reinforcement learning (RL) deals with the problem of an agent that has to learn how to behave to maximize its utility by its interactions with an environment (Sutton & Barto, 1998; Kaelbling, Littman & Moore, 1996). Reinforcement learning problems are usually formalized as Markov Decision Processes (MDP), which consist of a finite set of states and a finite number of possible actions that the agent can perform. At any given point in time, the agent is in a certain state and picks an action. It can then observe the new state this action leads to, and receives a reward signal. The goal of the agent is to maximize its long-term reward. In this standard formalization, no particular structure or relationship between states is assumed. However, learning in environments with extremely large state spaces is infeasible without some form of generalization. Exploiting the underlying structure of a problem can effect generalization and has long been recognized as an important aspect in representing sequential decision tasks (Boutilier et al., 1999). Hierarchical Reinforcement Learning is the subfield of RL that deals with the discovery and/or exploitation of this underlying structure. Two main ideas come into play in hierarchical RL. The first one is to break a task into a hierarchy of smaller subtasks, each of which can be learned faster and easier than the whole problem. Subtasks can also be performed multiple times in the course of achieving the larger task, reusing accumulated knowledge and skills. The second idea is to use state abstraction within subtasks: not every task needs to be concerned with every aspect of the state space, so some states can actually be abstracted away and treated as the same for the purpose of the given subtask.


Author(s):  
David Abel

Reinforcement learning presents a challenging problem: agents must generalize experiences, efficiently explore the world, and learn from feedback that is delayed and often sparse, all while making use of a limited computational budget. Abstraction is essential to all of these endeavors. Through abstraction, agents can form concise models of both their surroundings and behavior, supporting effective decision making in diverse and complex environments. To this end, the goal of my doctoral research is to characterize the role abstraction plays in reinforcement learning, with a focus on state abstraction. I offer three desiderata articulating what it means for a state abstraction to be useful, and introduce classes of state abstractions that provide a partial path toward satisfying these desiderata. Collectively, I develop theory for state abstractions that can 1) preserve near-optimal behavior, 2) be learned and computed efficiently, and 3) can lower the time or data needed to make effective decisions. I close by discussing extensions of these results to an information theoretic paradigm of abstraction, and an extension to hierarchical abstraction that enjoys the same desirable properties.


2020 ◽  
Author(s):  
Liyu Xia ◽  
Anne G. E. Collins

AbstractHumans use prior knowledge to efficiently solve novel tasks, but how they structure past knowledge to enable such fast generalization is not well understood. We recently proposed that hierarchical state abstraction enabled generalization of simple one-step rules, by inferring context clusters for each rule. However, humans’ daily tasks are often temporally extended, and necessitate more complex multi-step, hierarchically structured strategies. The options framework in hierarchical reinforcement learning provides a theoretical framework for representing such transferable strategies. Options are abstract multi-step policies, assembled from simpler one-step actions or other options, that can represent meaningful reusable strategies as temporal abstractions. We developed a novel sequential decision making protocol to test if humans learn and transfer multi-step options. In a series of four experiments, we found transfer effects at multiple hierarchical levels of abstraction that could not be explained by flat reinforcement learning models or hierarchical models lacking temporal abstraction. We extended the options framework to develop a quantitative model that blends temporal and state abstractions. Our model captures the transfer effects observed in human participants. Our results provide evidence that humans create and compose hierarchical options, and use them to explore in novel contexts, consequently transferring past knowledge and speeding up learning.


Sign in / Sign up

Export Citation Format

Share Document