Online statistical hypothesis test for leak detection in water distribution networks

2021 ◽  
Vol 40 (5) ◽  
pp. 8665-8681
Author(s):  
Radhia Fezai ◽  
Majdi Mansouri ◽  
Kamaleldin Abodayeh ◽  
Hazem Nounou ◽  
Mohamed Nounou ◽  
...  

This paper aims at improving the operation of the water distribution networks (WDN) by developing a leak monitoring framework. To do that, an online statistical hypothesis test based on leak detection is proposed. The developed technique, the so-called exponentially weighted online reduced kernel generalized likelihood ratio test (EW-ORKGLRT), is addressed so that the modeling phase is performed using the reduced kernel principal component analysis (KPCA) model, which is capable of dealing with the higher computational cost. Then the computed model is fed to EW-ORKGLRT chart for leak detection purposes. The proposed approach extends the ORKGLRT method to the one that uses exponential weights for the residuals in the moving window. It might be able to further enhance leak detection performance by detecting small and moderate leaks. The developed method’s main advantages are first dealing with the higher required computational time for detecting leaks and then updating the KPCA model according to the dynamic change of the process. The developed method’s performance is evaluated and compared to the conventional techniques using simulated WDN data. The selected performance criteria are the excellent detection rate, false alarm rate, and CPU time.

2012 ◽  
Vol 45 (20) ◽  
pp. 570-575 ◽  
Author(s):  
Myrna Violeta Casillas Ponce ◽  
Luis Eduardo Garza Castañón, ◽  
Vicenç Puig Cayuela

2013 ◽  
Vol 16 (3) ◽  
pp. 649-670 ◽  
Author(s):  
Myrna V. Casillas Ponce ◽  
Luis E. Garza Castañón ◽  
Vicenç Puig Cayuela

In this paper, we propose a new approach for model-based leak detection and location in water distribution networks (WDN), which considers an extended time-horizon analysis of pressure sensitivities. Five different ways of using the leak sensitivity matrix to isolate the leaks are described and compared. The first method is based on the binarization approach. The second, third and fourth methods are based on the comparison of the measured pressure vectors with the leak sensitivity matrix using different metrics: correlation, angle between vectors and Euclidean distance, respectively. The fifth method is based on the least square optimization method. The performance of these methods is compared when applied to two academic small networks (Hanoi and Quebra) widely used in the literature. Finally, the three methods with better performance are applied to a district metering area of the Barcelona WDN using real data.


Sign in / Sign up

Export Citation Format

Share Document