A parallel biological computing algorithm to solve the vertex coloring problem with polynomial time complexity

2021 ◽  
pp. 1-11
Author(s):  
Zhaocai Wang ◽  
Dangwei Wang ◽  
Xiaoguang Bao ◽  
Tunhua Wu

The vertex coloring problem is a well-known combinatorial problem that requires each vertex to be assigned a corresponding color so that the colors on adjacent vertices are different, and the total number of colors used is minimized. It is a famous NP-hard problem in graph theory. As of now, there is no effective algorithm to solve it. As a kind of intelligent computing algorithm, DNA computing has the advantages of high parallelism and high storage density, so it is widely used in solving classical combinatorial optimization problems. In this paper, we propose a new DNA algorithm that uses DNA molecular operations to solve the vertex coloring problem. For a simple n-vertex graph and k different kinds of color, we appropriately use DNA strands to indicate edges and vertices. Through basic biochemical reaction operations, the solution to the problem is obtained in the O (kn2) time complexity. Our proposed DNA algorithm is a new attempt and application for solving Nondeterministic Polynomial (NP) problem, and it provides clear evidence for the ability of DNA calculations to perform such difficult computational problems in the future.

2006 ◽  
Vol 51 (20) ◽  
pp. 2541-2549 ◽  
Author(s):  
Jin Xu ◽  
Xiaoli Qiang ◽  
Fang Gang ◽  
Kang Zhou

Author(s):  
Bruno Dias ◽  
Rosiane de Freitas ◽  
Nelson Maculan ◽  
Javier Marenco

Sign in / Sign up

Export Citation Format

Share Document