scholarly journals Load and resistance factor design of drilled shafts subjected to lateral loading at service limit state

2018 ◽  
Author(s):  
◽  
Minh Dinh Uong

Since 2007, the American Association of State Highway Administration Officials (AASHTO) has made utilization of Load and Resistance Factor Design (LRFD) mandatory on all federally-funded new bridge projects (AASHTO, 2007). However, currently, there are no guidelines implementing LRFD techniques for design of drilled shaft subjected to lateral loads using reliability-based analysis. On a national level, the AASHTO LRFD Bridge Design Specifications (AASHTO, 2012) specify that a resistance factor of 1.0 be used for design of drilled shafts subjected to lateral loading at service limit state, which means reliability-based analyses for calibration of resistance factors have not been performed. Therefore, there is a need to create a LRFD procedure for drilled shafts subjected to lateral loading at service limit state that has reliability-based calibrated resistance factors applicable for future projects. The research focuses on the reliability-based analysis of drilled shaft subjected to lateral loading, characterize lateral load transfer model of drilled shafts in shale, probabilistic calibrate resistance factor and contribute to the development of design procedure using LRFD. The objective of this work is to improve the design of drilled shaft subjected to lateral loading using LRFD at service limit state by providing a more reliable design procedure than the current AASHTO LRFD procedure for drilled shafts subjected to lateral loading at service limit state.

2006 ◽  
Vol 43 (12) ◽  
pp. 1324-1332 ◽  
Author(s):  
Anil Misra ◽  
Lance A Roberts

The utility of the load and resistance factor design (LRFD) approach is being increasingly recognized for the design of drilled shafts. The current LRFD methodologies of drilled shaft design would be more efficient if reliability based design approaches were used for service limit state design. In this paper, the "t–z" methodology is utilized to develop probabilistic approaches for axial service limit state analysis of drilled shafts. Two different models of the soil–shaft interaction are implemented for load displacement calculations: (1) an ideal elastoplastic model, and (2) a hyperbolic model. For both of these soil–shaft interactions, Monte Carlo simulation is used to obtain a large set of load–displacement curves assuming lognormal distributions for the shaft–soil interface properties. The load–displacement curves are analyzed to develop two alternate methods for determining the probability of drilled shaft failure at the service limit state. As a result, cumulative distribution histograms are developed for drilled shaft load capacities at allowable head displacements. These results may be utilized to obtain resistance factors that can be applied to LRFD based service limit state design.Key words: drilled shaft, serviceability, failure probability, load displacement relation, "t–z" method.


2011 ◽  
Vol 48 (2) ◽  
pp. 265-279 ◽  
Author(s):  
Gordon A. Fenton ◽  
D. V. Griffiths ◽  
Olaide O. Ojomo

The reliability-based design of shallow foundations is generally implemented via a load and resistance factor design methodology embedded in a limit state design framework. For any particular limit state, the design proceeds by ensuring that the factored resistance equals or exceeds the factored load effects. Load and resistance factors are determined to ensure that the resulting design is sufficiently safe. Load factors are typically prescribed in structural codes and take into account load uncertainty. Factors applied to resistance depend on both uncertainty in the resistance (accounted for by a resistance factor) and desired target reliability (accounted for by a newly introduced consequence factor). This paper concentrates on how the consequence factor can be defined and specified to adjust the target reliability of a shallow foundation designed to resist bearing capacity failure.


Author(s):  
Rozbeh Moghaddam

This study presents the development and calibration of resistance factors for the serviceability limit state (SLS) condition (φSLS) used in the load and resistance factor design (LRFD) of deep foundations. The performance function was established based on load corresponding to tolerable displacement (Qδtol) and design load (Qd). A dataset of published full-scale load tests including projects from Texas, Missouri, Arkansas, Louisiana, and New Mexico was compiled and consisted of 60 load test cases comprising 33 driven piles and 27 drilled shafts. Resistance factors for SLS conditions were calibrated for tolerable displacements using both the Monte Carlo simulation (MCS) and the First Order Second Moment (FOSM) approaches. From the calibration study, resistance factors at SLS conditions were obtained ranging from 0.33 to 0.62 using FOSM method and 0.37 to 0.67 using the MCS for driven piles. In the case of drilled shafts, SLS resistance factors ranged from 0.37 to 0.77 following the FOSM method and 0.41 to 0.86 based on MCS.


2008 ◽  
Vol 45 (10) ◽  
pp. 1377-1392 ◽  
Author(s):  
Richard J. Bathurst ◽  
Tony M. Allen ◽  
Andrzej S. Nowak

Reliability-based design concepts and their application to load and resistance factor design (LRFD or limit states design (LSD) in Canada) are well known, and their adoption in geotechnical engineering design is now recommended for many soil–structure interaction problems. Two important challenges for acceptance of LRFD for the design of reinforced soil walls are (i) a proper understanding of the calibration methods used to arrive at load and resistance factors, and (ii) the proper interpretation of the data required to carry out this process. This paper presents LRFD calibration principles and traces the steps required to arrive at load and resistance factors using closed-form solutions for one typical limit state, namely pullout of steel reinforcement elements in the anchorage zone of a reinforced soil wall. A unique feature of this paper is that measured load and resistance values from a database of case histories are used to develop the statistical parameters in the examples. The paper also addresses issues related to the influence of outliers in the datasets and possible dependencies between variables that can have an important influence on the results of calibration.


Sign in / Sign up

Export Citation Format

Share Document