driven piles
Recently Published Documents


TOTAL DOCUMENTS

376
(FIVE YEARS 68)

H-INDEX

25
(FIVE YEARS 5)

2021 ◽  
Vol 12 (1) ◽  
pp. 2
Author(s):  
Xiaoya Bian ◽  
Jiawei Chen ◽  
Xixuan Bai ◽  
Kunpeng Zheng

Driven-pile setup is referred to a phenomenon in which the bearing capacity of driven piles increases with time after the end of driving (EOD). The setup effect can significantly improve the bearing capacity (ultimate resistance) of driven piles after initial installation, especially the ultimate shaft resistance. Based on the reliability theory and considering the setup effects of driven piles, this article presents an increase factor (Msetup) for the ultimate resistance of driven piles to modify the reliability index calculation formula. At the same time, the correlation between R0 and Rsetup is comprehensively considered in the reliability index calculation. Next, the uncertainty analysis of load and resistance is conducted to determine the ranges of relevant parameters. Meanwhile, the influence of four critical parameters (factor of safety FOS, the ratio of dead load to live load ρ = QD/QL, Msetup, the correlation coefficient between R0 and Rsetup, and ρR0,Rsetup) on reliability index are analyzed. This parametric study indicates that ρ has a slight influence on the reliability index. However, the reliability index is significantly influenced by FOS, Msetup, and ρR0,Rsetup. Finally, by comparisons with the existing results, it is concluded that the formula proposed in this study is reasonable, and more uncertainties are considered to make the calculated reliability index closer to a practical engineering application. The presented formula clearly expresses the incorporation of the pile setup effect into reliability index calculation, and it is conducive to improving the prediction accuracy of the design capacity of driven piles. Therefore, the reliability analysis of driven piles considering setup effects will present a theoretical basis for the application of driven piles in engineering practice.


Author(s):  
Elvira R. Kuzhakhmetova

Relevance. In the construction of buildings and structures, driven piles with a square cross section are most widely used. To install them in the working position, the percussion method is used. However, in cramped conditions, shock loads can lead to dangerous conditions and destruction of structures of nearby buildings. In such a situation, it is necessary to use rammed piles, since technological solutions for their construction are not associated with shock effects on the soil. One such solution is the new rammed cone-shaped pile design, which is installed without excavation. The aim of the study is to analyze the influence of the geometric parameters of the pile on its bearing capacity under the action of external loads, in particular, the angle of its taper. Methods. The results of a numerical analysis of the stress-strain state of a pile operating in a soil massif were obtained by the finite element method. Results. In the computational study, a comparative analysis of the state of piles of different lengths and geometries under the action of external loads was carried out. The influence of the angle of inclination of the lateral surface of the pile on its bearing capacity is considered. Rationalization of the pile design was carried out taking into account the total costs of building materials. Variants of geometric and design solutions for piles with a length L from 1 to 10 m are proposed. In subsequent articles, it is proposed to consider the effect on the bearing capacity of the pile of the geometric parameters of the crushed stone shell and the lower crushed stone spherical expansion, as well as to carry out a comparative analysis of the numerical results with experimental data obtained in laboratory and field conditions.


2021 ◽  
Vol 11 (22) ◽  
pp. 10908
Author(s):  
Mohammed Amin Benbouras ◽  
Alexandru-Ionuţ Petrişor ◽  
Hamma Zedira ◽  
Laala Ghelani ◽  
Lina Lefilef

Estimating the bearing capacity of piles is an essential point when seeking for safe and economic geotechnical structures. However, the traditional methods employed in this estimation are time-consuming and costly. The current study aims at elaborating a new alternative model for predicting the pile-bearing capacity based on eleven new advanced machine-learning methods in order to overcome these limitations. The modeling phase used a database of 100 samples collected from different countries. Additionally, eight relevant factors were selected in the input layer based on the literature recommendations. The optimal inputs were modeled using the machine-learning methods and their performance was assessed through six performance measures using a K-fold cross-validation approach. The comparative study proved the effectiveness of the DNN model, which displayed a higher performance in predicting the pile-bearing capacity. This elaborated model provided the optimal prediction, i.e., the closest to the experimental values, compared to the other models and formulae proposed by previous studies. Finally, a reliable and easy-to-use graphical interface was generated, namely “BeaCa2021”. This will be very helpful for researchers and civil engineers when estimating the pile-bearing capacity, with the advantage of saving time and money.


2021 ◽  
Vol 11 (18) ◽  
pp. 8609
Author(s):  
Xiaoya Bian ◽  
Jiawei Chen ◽  
Xuyong Chen ◽  
Zhijun Xu

The total ultimate resistance (or bearing capacity) of driven piles considering setup effects is composed of initial ultimate resistance and setup resistance, and the setup effects of driven piles are mainly reflected by the setup resistance. In literature, a logarithmic empirical formula is generally used to quantify the setup effects of driven piles. This paper proposes an increase factor (Msetup) to modify the resistance factor and factor of safety calculation formula in accordance with the load and resistance factor design (LFRD) principle; here, the increase factor is defined as the ratio of the setup resistance (Rsetup) to the initial ultimate resistance (R0) of driven piles. Meanwhile, the correlation between R0 and Rsetup is fully considered in the resistance factor and factor of safety calculation. Finally, the influence of four key parameters (ratio of dead load to live load ρ = QD/QL, target reliability index βT, Msetup, correlation coefficient between R0 and Rsetup, ρR0,Rsetup) on the resistance factor and factor of safety are analyzed. Parametric research shows that ρ has basically no effect on the resistance factor, which can be taken as a constant in further research, and ρ has a significant influence on the factor of safety. The value of Msetup has almost no effect on the resistance factor and factor of safety. However, βT and ρR0,Rsetup have a significant influence on the resistance factor and factor of safety, so the value selection of βT and ρR0,Rsetup are crucial for reliability-based design of driven piles. Through this study, it is concluded that considering setup effects in reliability-based design of driven piles will greatly improve the prediction for design capacity.


Sign in / Sign up

Export Citation Format

Share Document