resistance factors
Recently Published Documents


TOTAL DOCUMENTS

720
(FIVE YEARS 159)

H-INDEX

47
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Lijun Lu ◽  
Lijing Bu ◽  
Si-Ming Zhang ◽  
Sarah K. Buddenborg ◽  
Eric S. Loker

BackgroundWe seek to provide a comprehensive overview of transcriptomics responses of immune-related features of the gastropod Biomphalaria glabrata (Bg) following exposure to Schistosoma mansoni (Sm), a trematode causing human schistosomiasis. Responses of schistosome-susceptible (M line, or SUS) and -resistant (BS-90, or RES) Bg strains were characterized following exposure to Sm for 0.5, 2, 8 or 40 days post-exposure (dpe).MethodsRNA-Seq and differential expression analysis were undertaken on 56 snails from 14 groups. We considered 7 response categories: 1) constitutive resistance factors; 2) constitutive susceptibility factors; 3) generalized stress responses; 4) induced resistance factors; 5) resistance factors suppressed in SUS snails; 6) suppressed/manipulated factors in SUS snails; and 7) tolerance responses in SUS snails. We also undertook a gene co-expression network analysis. Results from prior studies identifying schistosome resistance/susceptibility factors were examined relative to our findings.ResultsA total of 792 million paired-end reads representing 91.2% of the estimated 31,985 genes in the Bg genome were detected and results for the 7 categories compiled and highlighted. For both RES and SUS snails, a single most supported network of genes with highly correlated expression was found.Conclusions1) Several constitutive differences in gene expression between SUS and RES snails were noted, the majority over-represented in RES; 2) There was little indication of a generalized stress response shared by SUS and RES snails at 0.5 or 2 dpe; 3) RES snails mounted a strong, multi-faceted response by 0.5 dpe that carried over to 2 dpe; 4) The most notable SUS responses were at 40 dpe, in snails shedding cercariae, when numerous features were either strongly down-regulated indicative of physiological distress or parasite manipulation, or up-regulated, suggestive of tolerance or survival-promoting effects; 5) Of 55 genes previously identified in genome wide mapping studies, 29 (52.7%) were responsive to Sm, as were many familiar resistance-associated genes (41.0%) identified by other means; 6) Both network analysis and remarkably specific patterns of expression of lectins and G protein-coupled receptors in categories 4, 6 and 7 were indicative of orchestrated responses of different suites of genes in SUS or RES snails following exposure to Sm.


2021 ◽  
Vol 33 (6) ◽  
pp. 287-292
Author(s):  
Jungwon Huh ◽  
Nhu Son Doan ◽  
Van Ha Mac ◽  
Van Phu Dang ◽  
Dong Hyawn Kim

Load and resistance factor design is an efficient design approach that provides a system of consistent design solutions. This study aims to determine the load and resistance factors needed for the design of breakwater foundations within a probabilistic framework. In the study, four typical types of Korean breakwaters, namely, rubble mound breakwaters, vertical composite caisson breakwaters, perforated caisson breakwaters, and horizontal composite breakwaters, are investigated. The bearing capacity of breakwater foundations under wave loading conditions is thoroughly examined. Two levels of the target reliability index (RI) of 2.5 and 3.0 are selected to implement the load and resistance factors calibration using Monte Carlo simulations with 100,000 cycles. The normalized resistance factors are found to be lower for the higher target RI as expected. Their ranges are from 0.668 to 0.687 for the target RI of 2.5 and from 0.576 to 0.634 for the target RI of 3.0.


2021 ◽  
Vol 33 (6) ◽  
pp. 293-297
Author(s):  
Dong Hyawn Kim ◽  
Jungwon Huh

Calibration of load-resistance factors for the limit state design of front covered caisson breakwaters were presented. Reliability analysis of the breakwaters which are constructed in Korean coast was conducted. Then, partial safety factors and load-resistance factors were sequentially calculated according to target reliability index. Load resistance factors were optimized to give one set of factor for limit state design of breakwater. The breakwaters were redesigned by using the optimal load resistance factor and verified whether reliability indices larger than the target value. Finally, load-resistance factors were compared with foreign country’s code for verification.


2021 ◽  
Vol 14 (1) ◽  
pp. 122
Author(s):  
Shaun Wei Jun Choong ◽  
Poh Kiat Ng ◽  
Boon Chin Yeo ◽  
Anca Draghici ◽  
Alin Gaureanu ◽  
...  

Studies show that heavy machinery operators are exposed to risk factors of musculoskeletal diseases. However, there has yet to be a study investigating the grip analysis of heavy machinery control levers. This preliminary study aims to investigate the grip analysis of a system that emulates the push–pull operations, handle shapes, and resistance of wheel loader control lever systems. The system was designed, analysed, and optimised using Autodesk Inventor 2019 before fabrication and testing. It underwent usability testing for estimated and perceived grip force analysis (ergonomics analysis). The tests measured estimated force using a sensor glove, and perceived force using the Borg CR10 scale. The data were analysed using regression and paired t-tests. The findings suggested that pulling and high resistance factors required higher estimated force (339.50 N) and perceived force (5.625) than pushing and low resistance factors in manoeuvring the system (p < 0.05). The cylindrical handle required more estimated force (339.50 N) but less perceived force (4.5) than the spherical handle due to ergonomic design considerations (p < 0.05). Although there were inaccuracies in force measurement methods, the perceived method was still effective for data collection, since it is challenging to measure grip force in a real situation with heavy machinery. While this study was only a simulation, it provided researchers with ideas that may solve problems in the manipulation of heavy machinery control levers.


2021 ◽  
Author(s):  
Saeid Okhravi ◽  
Radoslav Schügerl ◽  
Yvetta Velísková

Abstract The study addresses the research concern that the employment of fixed value for bed roughness coefficient in lowland rivers (mostly ‌sand-bed rivers) is deemed practically questionable in the presence of a mobile bed and time-dependent changes in vegetation patches. To address this issue, we set up 45 cross-sections in four lowland streams to investigate seasonal flow resistance values within a year. The results first revealed that the significant sources of boundary resistance in lowland rivers with lower regime flow are bed forms and aquatic vegetation. Then, the study uses flow discharge as an influential variable reflecting the impacts of the above-mentioned sources of resistance to flow. The studied approach ended up with two new flow resistance predictors which simply connect dimensionless unit discharge with flow resistance factors, Darcy-Weisbach (f) and Manning (n) coefficients. A comparison between the computed and measured flow resistance values indicates that 87-89% of data sets were within the ±20% error bands. The flow resistance predictors are also verified against large independent sets of field and flume data. The obtained predictions using the developed predictors may overestimate flow resistance factors to about 40% for other lowland rivers. From a different view of this research, the findings on seasonal variation of vegetation abundance hint at the augmentation in flow resistance values, both f, and n, in low summer flows when the vegetation covers river bed and side banks. The highest amount of flow resistance was observed during the summer period, July-August.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bashar Ramzi Behnam ◽  
Mohammed M. Mahmood Al-Iessa

Purpose The purpose of this paper is to investigate the potential design advantage in terms of resistance factors for normal weight concrete beams containing moderate-dose randomly dispersed short fibers and reinforced with glass fiber reinforced polymer (GFRP) bars.Design/methodology/approach An analytical model based on the current code specifications is used to calculate the moment capacity of over-reinforced sections. The vast majority of the considered beams are over-reinforced, compression-controlled. The data of the fiber-reinforced concrete (FRC) reinforced with GFRP bars are collected from three published research studies which are based on experimentally tested results. Three different types of short fibers with four volume fractions are considered. Probabilistic model is established to conduct reliability-based calibration using Monte-Carlo Simulation. Limit state function, relevant load and resistance random variables are identified, and adequate statistical parameters are selected. Target reliability index consistent with the one used to develop current design code specifications is used.Findings Reliability analysis and calibration process are carried out with the intention of estimating the flexural resistance factors for FRC beams reinforced with GFRP bars.Originality/value The predicted flexural resistance factors ranged from 0.72 to 0.95, giving the resistance factors the potential to be increased above the currently specified value of 0.65 for compression-controlled members reinforced with FRP bars.


Author(s):  
Pengpeng He ◽  
Gordon A. Fenton ◽  
D.V. Griffiths

Although the geotechnical resistance 19 factors at ultimate limit state used for dynamic loading conditions should be different from those for static loading conditions, most current structural and geotechnical design codes do not specifically provide dynamic resistance factors. In this paper, the ultimate limit state reliability analysis of individual shallow foundations for drained and undrained soil conditions under seismic (pseudo-dynamic) and wind loads using the Random Finite Element Method is carried out using the provisions of the National Building Code of Canada. The geotechnical resistance factors required to achieve target maximum lifetime failure probabilities are estimated for a few major Canadian cities. The results indicate that the failure probability for drained soil conditions is slightly greater than that for undrained soil conditions. In addition, the results suggest that the dynamic resistance factors for foundation bearing capacity design at ULS are lower than those for static foundation design specified by the code. The current analysis can be used to guide the calibration of these geotechnical resistance factors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amanda K. Broz ◽  
Christopher M. Miller ◽  
You Soon Baek ◽  
Alejandro Tovar-Méndez ◽  
Pablo Geovanny Acosta-Quezada ◽  
...  

The self-incompatibility (SI) system in the Solanaceae is comprised of cytotoxic pistil S-RNases which are countered by S-locus F-box (SLF) resistance factors found in pollen. Under this barrier-resistance architecture, mating system transitions from SI to self-compatibility (SC) typically result from loss-of-function mutations in genes encoding pistil SI factors such as S-RNase. However, the nature of these mutations is often not well characterized. Here we use a combination of S-RNase sequence analysis, transcript profiling, protein expression and reproductive phenotyping to better understand different mechanisms that result in loss of S-RNase function. Our analysis focuses on 12 S-RNase alleles identified in SC species and populations across the tomato clade. In six cases, the reason for gene dysfunction due to mutations is evident. The six other alleles potentially encode functional S-RNase proteins but are typically transcriptionally silenced. We identified three S-RNase alleles which are transcriptionally silenced under some conditions but actively expressed in others. In one case, expression of the S-RNase is associated with SI. In another case, S-RNase expression does not lead to SI, but instead confers a reproductive barrier against pollen tubes from other tomato species. In the third case, expression of S-RNase does not affect self, interspecific or inter-population reproductive barriers. Our results indicate that S-RNase expression is more dynamic than previously thought, and that changes in expression can impact different reproductive barriers within or between natural populations.


Author(s):  
Chitrak Vimalbhai Dave

Abstract: It is inevitable for any successful IT industry not to estimate the effort, cost, and duration of their projects. As evident by Standish group chaos manifesto that approx 43% of the projects are often delivered late and entered crises because of over budget and less required functions. Improper and inaccurate estimation of software projects leads to a failure, and therefore it must be considered in true letter and spirit. When Agile principle-based process models (e.g. Scrum) came into the market, a significant change can be seen. This change in culture proves to be a boon forstrengthening the collaboration betweendeveloper and customer.Estimation has always been challenging in Agile as requirements are volatile. This encourages researchersto work on effort estimation. There are many reasons for the gap between estimated and actual effort, viz., project, people, and resistance factors, wrong use of cost drivers, ignorance of regression testing effort, understandability of user story size and its associated complexity, etc. This paperreviewed the work of numerous authors and potential researchers working on bridging the gap of actual and estimated effort. Through intensive and literature review, it can be inferred that machine learning models clearly outperformed non-machine learning and traditional techniques of estimation. Keywords: Machine Learning, Scrum, Scrum Projects, Effort Estimation, Agile Software Development


Sign in / Sign up

Export Citation Format

Share Document