An interaction integral method for evaluating T-stress for two-dimensional crack problems using the extended radial point interpolation method
The so-called T-stress, or second term of the William (1957) series expansion for linear elastic crack-tip fields, has found many uses in fracture mechanics applications. In this paper, an interaction integral method for calculating the T-stress for two-dimensional crack problems using the extended radial point interpolation method (XRPIM) is presented. Typical advantages of RPIM shape function are the satisfactions of the Kronecker’s delta property and the high-order continuity. The T-stress can be calculated directly from a path independent interaction integral entirely based on the J-integral by simply the auxiliary field. Several benchmark examples in 2D crack problem are performed and compared with other existing solutions to illustrate the correction of the presented approach.