scholarly journals Stochastic differential of Ito – Levy processes

2016 ◽  
Vol 19 (2) ◽  
pp. 80-83
Author(s):  
Dam Ton Duong ◽  
Phung Ngoc Nguyen

In this paper, we continue to expand some results to get the product rule for differential of stochastic processes with jump, and apply for some special processes like pure jump process, Levy-Ornstein-Uhlenbeck process, geometric Levy process, in models of finance, ecomomics, and information technology.

2015 ◽  
Vol 47 (01) ◽  
pp. 128-145 ◽  
Author(s):  
Kamille Sofie Tågholt Gad ◽  
Jesper Lund Pedersen

The main result of this paper is the solution to the optimal stopping problem of maximizing the variance of a geometric Lévy process. We call this problem the variance problem. We show that, for some geometric Lévy processes, we achieve higher variances by allowing randomized stopping. Furthermore, for some geometric Lévy processes, the problem has a solution only if randomized stopping is allowed. When randomized stopping is allowed, we give a solution to the variance problem. We identify the Lévy processes for which the allowance of randomized stopping times increases the maximum variance. When it does, we also solve the variance problem without randomized stopping.


2015 ◽  
Vol 47 (1) ◽  
pp. 128-145 ◽  
Author(s):  
Kamille Sofie Tågholt Gad ◽  
Jesper Lund Pedersen

The main result of this paper is the solution to the optimal stopping problem of maximizing the variance of a geometric Lévy process. We call this problem the variance problem. We show that, for some geometric Lévy processes, we achieve higher variances by allowing randomized stopping. Furthermore, for some geometric Lévy processes, the problem has a solution only if randomized stopping is allowed. When randomized stopping is allowed, we give a solution to the variance problem. We identify the Lévy processes for which the allowance of randomized stopping times increases the maximum variance. When it does, we also solve the variance problem without randomized stopping.


1993 ◽  
Vol 132 ◽  
pp. 141-153 ◽  
Author(s):  
Toshiro Watanabe

In this paper it is shown that there is a unimodal Levy process with oscillating mode. After the author first constructed an example of such a self-decomposable process, Sato pointed out that it belongs to the class of semi-stable processes with β < 0. We prove that all non-symmetric semi-stable self-decomposable processes with β < 0 have oscillating modes.


2013 ◽  
Vol 23 (3) ◽  
pp. 613-622 ◽  
Author(s):  
Piotr Nowak ◽  
Maciej Romaniuk

Abstract In this paper the problem of European option valuation in a Levy process setting is analysed. In our model the underlying asset follows a geometric Levy process. The jump part of the log-price process, which is a linear combination of Poisson processes, describes upward and downward jumps in price. The proposed pricing method is based on stochastic analysis and the theory of fuzzy sets.We assume that some parameters of the financial instrument cannot be precisely described and therefore they are introduced to the model as fuzzy numbers. Application of fuzzy arithmetic enables us to consider various sources of uncertainty, not only the stochastic one. To obtain the European call option pricing formula we use the minimal entropy martingale measure and Levy characteristics.


2006 ◽  
Vol 38 (03) ◽  
pp. 768-791 ◽  
Author(s):  
A. B. Dieker

We give three applications of the Pecherskii-Rogozin-Spitzer identity for Lévy processes. First, we find the joint distribution of the supremum and the epoch at which it is ‘attained’ if a Lévy process has phase-type upward jumps. We also find the characteristics of the ladder process. Second, we establish general properties of perturbed risk models, and obtain explicit fluctuation identities in the case that the Lévy process is spectrally positive. Third, we study the tail asymptotics for the supremum of a Lévy process under different assumptions on the tail of the Lévy measure.


2015 ◽  
Vol 47 (04) ◽  
pp. 1108-1131 ◽  
Author(s):  
Claudia Klüppelberg ◽  
Muneya Matsui

Fractional Lévy processes generalize fractional Brownian motion in a natural way. We go a step further and extend the usual fractional Riemann-Liouville kernel to a regularly varying function. We call the resulting stochastic processes generalized fractional Lévy processes (GFLPs) and show that they may have short or long memory increments and that their sample paths may have jumps or not. Moreover, we define stochastic integrals with respect to a GFLP and investigate their second-order structure and sample path properties. A specific example is the Ornstein-Uhlenbeck process driven by a time-scaled GFLP. We prove a functional central limit theorem for such scaled processes with a fractional Ornstein-Uhlenbeck process as a limit process. This approximation applies to a wide class of stochastic volatility models, which include models where possibly neither the data nor the latent volatility process are semimartingales.


Author(s):  
John Hawkes

Let Xt be a Lévy process in Rd, d-dimensional euclidean space. That is X is a Markov process whose transition function satisfies


Sign in / Sign up

Export Citation Format

Share Document