scholarly journals Median Filtering Detection Based on Quaternion Convolutional Neural Network

2020 ◽  
Vol 65 (1) ◽  
pp. 929-943
Author(s):  
Jinwei Wang ◽  
Qiye Ni ◽  
Yang Zhang ◽  
XiangYang Luo ◽  
Yun-Qing Shi ◽  
...  
2020 ◽  
Vol 2 (4) ◽  
pp. 556-567
Author(s):  
Jingjing Ma ◽  
Lei Pang ◽  
Lei Yan ◽  
Jiang Xiao

Black spot is one of the seriously damaging plant diseases in China, especially in rose production. Hyperspectral technology reflects both external features and internal structure information of measured samples, which can be used to identify the disease. In this research, both the spectral and image features of two infected roses with black spot were used to train a convolutional neural network (CNN) model. Multiple scattering correction (MSC) and standard normal variable (SNV) methods were applied to preprocess the spectral data. Cropping, median filtering and binarization were pretreatments used on the hyperspectral images. Three CNN models based on Alexnet, VGG16 and neural discriminative dimensionality reduction (NDDR) were evaluated by analyzing the classification accuracy and loss function. The results show that the CNN model based on the fusion of features has higher accuracy. The highest accuracies of detection of blackspot in different roses are 12–26 (100%) and 13–54 (99.95%), applying the NDDR-CNN model. Therefore, this research indicates that the spectral analysis based on CNN can detect black spot of roses, which provides a reference for the detection of other plant diseases, and has favorable research significance as well as prospect for development.


2020 ◽  
Author(s):  
S Kashin ◽  
D Zavyalov ◽  
A Rusakov ◽  
V Khryashchev ◽  
A Lebedev

2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Sign in / Sign up

Export Citation Format

Share Document