scholarly journals Test Case Generation from UML-Diagrams Using Genetic Algorithm

2021 ◽  
Vol 67 (2) ◽  
pp. 2321-2336
Author(s):  
Rajesh Kumar Sahoo ◽  
Morched Derbali ◽  
Houssem Jerbi ◽  
Doan Van Thang ◽  
P. Pavan Kumar ◽  
...  
Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1779
Author(s):  
Wanida Khamprapai ◽  
Cheng-Fa Tsai ◽  
Paohsi Wang ◽  
Chi-En Tsai

Test case generation is an important process in software testing. However, manual generation of test cases is a time-consuming process. Automation can considerably reduce the time required to create adequate test cases for software testing. Genetic algorithms (GAs) are considered to be effective in this regard. The multiple-searching genetic algorithm (MSGA) uses a modified version of the GA to solve the multicast routing problem in network systems. MSGA can be improved to make it suitable for generating test cases. In this paper, a new algorithm called the enhanced multiple-searching genetic algorithm (EMSGA), which involves a few additional processes for selecting the best chromosomes in the GA process, is proposed. The performance of EMSGA was evaluated through comparison with seven different search-based techniques, including random search. All algorithms were implemented in EvoSuite, which is a tool for automatic generation of test cases. The experimental results showed that EMSGA increased the efficiency of testing when compared with conventional algorithms and could detect more faults. Because of its superior performance compared with that of existing algorithms, EMSGA can enable seamless automation of software testing, thereby facilitating the development of different software packages.


2021 ◽  
Vol 12 (1) ◽  
pp. 111-130
Author(s):  
Ankita Bansal ◽  
Abha Jain ◽  
Abhijeet Anand ◽  
Swatantra Annk

Huge and reputed software industries are expected to deliver quality products. However, industry suffers from a loss of approximately $500 billion due to shoddy software quality. The quality of the product in terms of its accuracy, efficiency, and reliability can be revamped through testing by focusing attention on testing the product through effective test case generation and prioritization. The authors have proposed a test-case generation technique based on iterative listener genetic algorithm that generates test cases automatically. The proposed technique uses its adaptive nature and solves the issues like redundant test cases, inefficient test coverage percentage, high execution time, and increased computation complexity by maintaining the diversity of the population which will decrease the redundancy in test cases. The performance of the technique is compared with four existing test-case generation algorithms in terms of computational complexity, execution time, coverage, and it is observed that the proposed technique outperformed.


2013 ◽  
Vol 709 ◽  
pp. 616-619
Author(s):  
Jing Chen

This paper proposes a genetic algorithm-based method to generate test cases. This method provides information for test case generation using state machine diagrams. Its feature is realizing automation through fewer generated test cases. In terms of automatic generation of test data based on path coverage, the goal is to build a function that can excellently assess the generated test data and guide the genetic algorithms to find the targeting parameter values.


Sign in / Sign up

Export Citation Format

Share Document