scholarly journals Optimization of Agrobacterium tumefaciens-Mediated Genetic Transformation of Maize

Phyton ◽  
2022 ◽  
Vol 91 (2) ◽  
pp. 363-374
Author(s):  
Mengtong Liu ◽  
Yangyang Zhou ◽  
Tongyu Liu ◽  
Jianyu Lu ◽  
Jing Qu ◽  
...  
2000 ◽  
Vol 108 (4) ◽  
pp. 413-419
Author(s):  
Patricia Dupré ◽  
Jerôme Lacoux ◽  
Godfrey Neutelings ◽  
Dominique Mattar-Laurain ◽  
Marc-André Fliniaux ◽  
...  

Author(s):  
Masoumeh Nomani ◽  
Masoud Tohidfar

Abstract Background Trachyspermum ammi is one of the key medicinal plant species with many beneficial properties. Thymol is the most important substance in the essential oil of this plant. Thymol is a natural monoterpene phenol with high anti-microbial, anti-bacterial, and anti-oxidant properties. Thymol in the latest research has a significant impact on slowing the progression of cancer cells in human. In this research, embryos were employed as convenient explants for the fast and effectual regeneration and transformation of T. ammi. To regenerate this plant, Murashige and Skoog (MS) and Gamborg's B5 (B5) media were supplemented with diverse concentrations of plant growth regulators, such as 6-benzyladenine (BA), 1-naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), and kinetin (kin). Transgenic Trachyspermum ammi plants were also obtained using Agrobacterium-mediated transformation and zygotic embryos explants. Moreover, two Agrobacterium tumefaciens strains (EHA101 and LBA4404) harboring pBI121-TPS2 were utilized for genetic transformation to Trachyspermum ammi. Results According to the obtained results, the highest plant-regeneration frequency was obtained with B5 medium supplemented with 0.5 mg/l BA and 1 mg/l NAA. The integrated gene was also approved using the PCR reaction and the Southern blot method. Results also showed that the EHA101 strain outperformed another strain in inoculation time (30 s) and co-cultivation period (1 day) (transformation efficiency 19.29%). Furthermore, HPLC method demonstrated that the transformed plants contained a higher thymol level than non-transformed plants. Conclusions In this research, a fast protocol was introduced for the regeneration and transformation of Trachyspermum ammi, using zygotic embryo explants in 25–35 days. Our findings confirmed the increase in the thymol in the aerial part of Trachyspermum ammi. We further presented an efficacious technique for enhancing thymol content in Trachyspermum ammi using Agrobacterium-mediated plant transformation system that can be beneficial in genetic transformation and other plant biotechnology techniques.


1997 ◽  
Vol 24 (1) ◽  
pp. 97 ◽  
Author(s):  
K. Kazan ◽  
M. D. Curtis ◽  
K. C. Goulter ◽  
J. M. Manners

Double haploid (DH) genotypes of canola (Brassica napus L.) have a high level of genetic uniformity but have not been previously tested for genetic transformation. Transgenic plants from three of four DH genotypes derived from cv. Westar were obtained by inoculation of either hypocotyl segments or root explants with Agrobacterium tumefaciens. For hypocotyl transformation, A. tumefaciens strain LBA4404 containing a binary plasmid with the neomycin phosphotransferase gene (nptII) and a CaMV 35S-peroxidase gene cassette was co-cultivated with hypocotyl segments taken from the 5–6-day-old seedlings. Transformation frequencies for hypocotyl explants of two DH genotypes were 0.3–3%. Direct evidence for genetic transformation of hypocotyl explants was obtained through molecular hybridisation analysis. Using this protocol, mature transformed plants were obtained within 4–6 months of co-cultivation. A method of root transformation was successfully modified for one DH genotype of canola and transgenic plants were obtained at a frequency of 2%. Using this protocol, a peroxidase gene promoter–GUS fusion construct was introduced into a DH genotype. Tissue specific GUS expression driven by the peroxidase gene promoter in transgenic plants was analysed by GUS staining. Transformation systems for double haploid canola lines will permit the assessment of introduced genes for their effect on agronomic and physiological traits.


Author(s):  
Guadalupe Fabiola Arcos-Ortega ◽  
Rafael Antonio Chan-Kuuk ◽  
Wilma Aracely González-Kantún ◽  
Ramón Souza-Perera ◽  
Yumi Elena Nakazawa-Ueji ◽  
...  

2017 ◽  
Vol 2 (6) ◽  
pp. 599 ◽  
Author(s):  
Tifa R. Kusumastuti ◽  
Rizkita R. Esyantia ◽  
Fenny M. Dwivany

Banana is one of the major fruit crops, though its conventional breeding has limitations, such as sterility and high polyploidy  levels.  Biotechnological  approach  using genetic  transformation  crop for improvement  offers  an alternative  solution.  In  this  study  a  protocol  was developed  for  establishing genetic  transformation  from embryogenic callus and somatic embryos of the banana cv Ambon Lumut . Embryogenic callus was obtained in ID4 medium (MS-based medium) supplemented with 1 mg L-1 IAA, 4 mg L-1 2,4D, and 0.03 g L-1 active charcoal. Embryogenic callus was transferred into liquid mediu m to establish somatic embryos. Embryogenic callus and somatic embryos were used for Agrobacterium tumefaciens-mediated transformation. A. tumefaciens strain A GL1, containing pART-TEST7 p lasmid with gfp gene as a reporter and CaM V35S as a promoter, was used for transformations. The embryogenic callus and somatic embryos were transformed using heat-shock method followed by centrifugation  (2000 rpm) and co-cult ivation in liquid medium containing acetosyringone (100 M) for 3 days. Results of the GFP analysis showed transient expression from gfp gene reporter in transformed embryogenic callus and somatic embryos. Transformation efficiency in somatic embryos (85,9%) was higher than  that in embryogenic callus (32.09%). PCR analysis using CaMV primer showed bands that compatible with CaMV35S promoter at 507 bp. This is a report showing establisment of embryogenic callus and somatic embryo culture transformation by using A. tumefaciens-mediated transformation protocol of the local banana cv Ambon Lumut. This study proved  the huge potential for genetic transformation of banana cv Ambon Lumut for crop improvement, such as pest or disease  resistance and abiotic factor stress tolerance. Keywords: banana; embryogenic callus; somatic embryos.


2018 ◽  
Vol 150 ◽  
pp. 9-17 ◽  
Author(s):  
Claudia D. Norzagaray-Valenzuela ◽  
Lourdes J. Germán-Báez ◽  
Marco A. Valdez-Flores ◽  
Sergio Hernández-Verdugo ◽  
Luke M. Shelton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document