scholarly journals Implementasi Metode Elemen Hingga Untuk Persoalan Aliran Air Pada Jaringan Pipa

Author(s):  
Cici Hayani ◽  
Tulus Tulus ◽  
Sawaluddin Sawaluddin

Pada zat cair yang mengalir di dalam bidang batas (contohnya pipa) akan terjadi tegangan geser dan gradien kecepatan pada seluruh medan aliran karena adanya kekentalan (viskositas). Penelitian ini bertujuan untuk melihat persoalan aliran air pada jaringan pipa yang diselesaikan dengan mengimplementasikan metode elemen hingga pada persamaan Navier-Stokes yang merupakan persamaan diferensial dasar yang menggambarkan aliran dari fluida Newtonian tak mampu-mampat. Dalam metode elemen hingga, medan aliran dipecah menjadi sekumpulan elemen-elemen fluida kecil (diskritisasi domain). Dalam penelitian ini peneliti menggambarkan aliran air pada bidang dua-dimensi (2D), kemudian dipilih fungsi interpolasi linier untuk elemen 2D, dan menurunkan elemen matriks dan vektor dengan metode Galerkin untuk mendapatkan persamaan Global. Hasil dari penelitian dengan bantuan komputer, memperlihatkan distribusi tekanan dan kecepatan aliran air untuk beberapa variasi bentuk pipa, yaitu pipa I dan pipa T, masing-masing juga dengan variasi posisi inlet/oulet. Hasil simulasi dengan COMSOL menunjukkan, bahwa terdapat hubungan antara tekanan dan kecepatan aliran air, kehilangan tekanan pada salah satu cabang pipa menyebabkan kecepatan aliran air menjadi tidak merata.   In liquid that flows inside the boundary field (e.g., pipe) there will be shear stress and velocity gradient in all flow fields due to viscosity. This study aimed to look at the problem of water flow in the pipe network solved by implementing the finite element method in the Navier-Stokes equation. This equation is a basic differential equation that describes the flow of incompressible Newtonian fluid. In the finite element method, the flow field is broken down into a set of small fluid elements (domain discretization). In this study the researcher described the flow of water in two-dimensional (2D) fields; then linear interpolation functions for 2D elements were selected and lowered the matrix and vector elements with the Galerkin method to obtain the Global equation. The results of the study with the help of computers showed the distribution of pressure and velocity of water flow for several variations in the shape of the pipe, namely pipe I and pipe T, each also with variations in position of inlet/outlet. The simulation with COMSOL showed that there was a relationship between the pressure and velocity of water flow, and the pressure loss on one of the pipe branches caused the water flow velocity to be uneven. 

1988 ◽  
Vol 7 (4) ◽  
pp. 174-183
Author(s):  
G. J. Van Tonder ◽  
J. F. Botha

The present investigation is mostly concerned with the contribution that the finite-element method can make towards the simulation of ground water flow. After a brief introduction to the finite element method, it is applied to the Grootfontein dolomitic aquifer near Mafikeng/Mmabatho. This aquifer yields water for irrigation purposes as well as water for the township. By utilizing the available information a good flow model was constructed for this aquifer. The model is considered calibrated and verificated.


2016 ◽  
Vol 5 (1) ◽  
pp. 63
Author(s):  
Musa Adam Aigo

<p>The aim of this paper is twofold first we will  provide a numerical solution of the Navier Stokes equation using the Projection technique and finite element method. The problem will be introduced in weak formulation and a Finite Element method will be developed, then solve in a fast way the sparse system derived. Second, the projection method with Control volume approach will be applied to get a fast solution, in iterations count.</p>


Author(s):  
Mahmood Khalid Hadi

Currently, the use of underground electric cables is a regular feature of present-day power transmission and distribution schemes. Issues related to economical limitations and the lack of adequate space led to the need for cables with an elevated current carrying capacity (ampacity). In order to achieve this objective, public services around the globe are focusing not only on better designs, but also on improving the level of precision in the context of cable parameter values. Precise parameter values are essential for ensuring that the replicated outcomes correspond sufficiently close to actual circumstances. While the conventional approach to ampacity calculation is through the IEC-60287 procedure, the numerical route is considered more specific and flexible. This endeavour harnesses the finite element method to conceive an innovative process for calculating the thermal field and ampacity of a cable. This process involves the crafting of a temperature field distribution model for scrutinizing temperature distribution in the region of an electric cable, and the deployment of the linear interpolation procedure for computing its ampacity. Subsequent to its formation, the model was put into operation on the underground cable 33KV XLPE.


Sign in / Sign up

Export Citation Format

Share Document