Numerical simulation of subsonic turbulent flow of oscillating NACA 0015 airfoi

2018 ◽  
Vol 2 ◽  
pp. 133-145
Author(s):  
D.O. Redchyts ◽  
◽  
S.V. Moiseenko ◽  
2010 ◽  
Vol 37 (5) ◽  
pp. 447-457
Author(s):  
Mitsuhiro Aoyagi ◽  
Hidetoshi Hashizume ◽  
Kazuhisa Yuki ◽  
Satoshi Ito ◽  
Takeo Muroga

Author(s):  
Jalusa Maria da Silva Ferrari ◽  
Luciano Noleto ◽  
jhon goulart ◽  
Fábio Kayser

This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.


2019 ◽  
Vol 139 (6) ◽  
pp. 3711-3724
Author(s):  
Farzad Pourfattah ◽  
Omid Ali Akbari ◽  
Vahid Jafrian ◽  
Davood Toghraie ◽  
Elnaz Pourfattah

1998 ◽  
Vol 41 (2) ◽  
pp. 447-453 ◽  
Author(s):  
Takashi OHTA ◽  
Yutaka MIYAKE ◽  
Takeo KAJISHIMA

2009 ◽  
Vol 21 (9) ◽  
pp. 095106 ◽  
Author(s):  
Massimiliano Di Liberto ◽  
Michele Ciofalo

2007 ◽  
Author(s):  
Adrian Lungu ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
Ch. Tsitouras

Author(s):  
J. Szydlowski ◽  
M. Costes

This paper presents numerical simulations of the flow around a NACA 0015 airfoil at static and dynamic stall. The treatment of these configurations is a very challenging task for CFD applications. The turbulent flow around the static and in pitch oscillation airfoil is computed using different approaches: 2D RANS, 3D RANS and DES methodologies and with finer and finer meshes in order to try to reach a space converged solution. The main conclusion of the paper is that the prediction of static and all the more dynamic stall is not mature with present modeling capabilities.


Sign in / Sign up

Export Citation Format

Share Document