naca 0015
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 33)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 1206 (1) ◽  
pp. 012014
Author(s):  
D Raval ◽  
S V Jain ◽  
A M Acharii ◽  
K Ghosh

Abstract In the present study, the design and analysis of smoke generator are done for the low-speed wind tunnel. The wind tunnel fan is fitted with the Variable Frequency Drive to produce the wind speed in the range of 3 to 32 m/s with fan speed of 150 to 1500 rpm. The design of smoke generator was done according to Preston Sweeting mist generator principle corresponding to the free stream velocity of 3 m/s. A controlled smoke generator consisting of kerosene reservoir, controlled heater, blower, liquid column height adjustment mechanism, valves etc. was designed and fabricated. The smoke generator produced the smoke at the rate of 154 cm3/s which was close to the design flow rate of 149 cm3/s. To supply the required quantity of smoke in the wind tunnel, the smoke rake of NACA 0010 profile was developed and installed in the rapid contraction section of the wind tunnel to achieve the streamlined flow. The parametric studies were done on the smoke generator at different power inputs and its effects were studied on smoke temperature, smoke discharge and boiling time of the kerosene. The flow visualization was carried out on NACA 0015 airfoil model and the images were captured to examine the flow physics around them under different operating conditions.


CFD Letters ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 36-51
Author(s):  
Mohamed Ibren ◽  
Amelda Dianne Andan ◽  
Waqar Asrar ◽  
Erwin Sulaeman

The development of sophisticated unmanned aerial vehicles and wind turbines for daily activities has triggered the interest of researchers. However, understanding the flow phenomena is a strenuous task due to the complexity of the flow field. The engaging topic calls for more research at low Reynolds numbers. The computational investigations on a two-dimensional (2D) airfoil are presented in this paper. Numerical simulation of unsteady, laminar-turbulent flow around NACA 0015 airfoil was performed by using shear-stress transport (SST) model at relatively low Reynolds number (8.4 × 104 to 1.7 × 105) and moderate angles of attack (0 ≤ α ≤ 6). In general, on the suction side, with increasing Reynolds number and angles of attack, separation, and reattachment point shifts upstream and concurrently shrinking the size of the laminar bubble. However, On the pressure side, the laminar bubble is seen to move toward the trailing edge at the relatively same size as the angle of attack increases. Moreover, the variations in the angle of attack have more influence on the laminar separation bubble characteristics as compared to the Reynolds number. The reattachment points were barely observed for the range of the angles of attack studied. At very high angles of attack, it is recommended to simulate the flow field using large eddy simulation or direct numerical simulation since the flow is considered three-dimensional and detached from the surface thus forming a complex phenomenon.


Author(s):  
V. T. Gopinathan ◽  
J. Bruce Ralphin Rose

The aerodynamic behavior of sweptback wing configurations with bio-inspired humpback whale (HW) leading-edge (LE) tubercles has been investigated through computational and experimental techniques. Specifically, the aerodynamic performance of tubercled wings with symmetric (NACA 0015) and cambered (NACA 4415) airfoils is validated against the baseline model at various angles of attack ([Formula: see text]. The [Formula: see text]/[Formula: see text] ratio of the HW flipper is strategically reduced to 0.15 for ascertaining the flow control potential of the bio-inspired wings with sweptback configuration. It is a novel effort to quantify the effect of the leading-edge protuberances on stall delay, flow separation control and distribution of streamline vortices at unique [Formula: see text]/[Formula: see text] ratio outside the thickness range of HW flipper morphology. Four tapered sweptback wing models (Baseline A, Baseline B, HUMP 0015, HUMP 4415) are used with the amplitude-to-wavelength ([Formula: see text] ratio of 0.24 and Reynolds number about [Formula: see text]. The chordwise pressure distributions are recorded at the peak, mid and trough regions of the tubercled wings through a detailed wind tunnel testing and validated with numerical analysis. Additionally, the flow characteristics over the bio-inspired surfaces have been qualitatively analyzed through the laser flow visualization (LFV) technique to reveal the influence of laminar separation bubbles (LSBs). The essential aerodynamic characteristics such as boundary layer trip delay, vortex mixing, stall delay, and flow control at different AoA are addressed through consistent experimental data. As the sweptback configuration is a primary choice for airplane wings, the improved aerodynamic characteristics of the tubercled wings can be effectively utilized for the design of novel lifting surfaces, hydroplanes and wind turbines in the near future.


2021 ◽  
Vol 847 (1) ◽  
pp. 012026
Author(s):  
A A Permanasari ◽  
A B Budiearso ◽  
S Sukarni ◽  
P Puspitasari ◽  
S N A Zaine ◽  
...  

2021 ◽  
Author(s):  
Balaji Shankar Venkatachari ◽  
Pedro Paredes ◽  
Meelan M. Choudhari ◽  
Fei Li ◽  
Chau-Lyan Chang

Author(s):  
Andres Felipe Burbano-Hernández ◽  
Diego Andres Hincapié Zuluaga ◽  
Jonathan Andrés Graciano-Uribe ◽  
Edwar Andrés Torres Lopéz

Vertical axis wind turbines such as Darrieus turbines are a very interesting category of low wind speed domestic wind turbines. Further research work is needed to enhance their efficiency to fulfill the higher demand in small applications for power generation. The main objective of this work is to find a Darrieus turbine design to boost the starting capacity of the turbine through an opening located at the lower surface of the airfoil. We carried out a thorough CFD (Computational Fluid Dynamics) investigation to determine the impact of the opening position on the Darrieus rotor's output. This new type of airfoil uses a standard NACA 0015 profile and a profile with an opening on the lower surface of the profile. Different sizes of the opening in a symmetrical profile are evaluated through the CFD method to predict the Cp and CT of this H-Darrieus turbine design. Five sections were designed to describe the research of this new H-Darrieus rotor. Generally speaking, the results showed that the Cp decreases with the opening ratio, the desirable rotors with the lower surface opening ratio are 0.12 to 0.36 considering this with the low CpLP.


AIAA Journal ◽  
2021 ◽  
pp. 1-14
Author(s):  
Mehmet Seyhan ◽  
Mustafa Sarioglu ◽  
Yahya E. Akansu

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1808
Author(s):  
S. Arunvinthan ◽  
V.S. Raatan ◽  
S. Nadaraja Pillai ◽  
Amjad A. Pasha ◽  
M. M. Rahman ◽  
...  

A series of wind tunnel tests were carried out to determine the effect of shark scale-based vortex generators (SSVG) on a NACA 0015 symmetrical airfoil's aerodynamic characteristics. Three different sets of SSVG with varying geometrical parameters, such as chord length, amplitude, and wavelength, were designed and fabricated using 3D printing. The SSVG models were blended to the baseline NACA 0015 symmetrical airfoil. The wind tunnel experiments were performed over the test airfoil mounted with different sets of SSVG at various angles of attack, ranging from 0° to 24° in increments of 3°, and operating in the range of Re = 2 × 105. The results revealed that the SSVG blended test airfoil reduced the drag and increased the maximum coefficient of lift (CLmax), thereby enhancing the overall aerodynamic performance. The SSVG offered noteworthy aerodynamic benefits by effectively altering the flow and causing significant spanwise variation in the flow properties. Additionally, attempts were made to identify the optimum chordwise location to blend the SSVG for effective use.


Sign in / Sign up

Export Citation Format

Share Document