scholarly journals Note on a simple closed curve bounding a pseudo-projective plane

Author(s):  
Akira Tominaga
2002 ◽  
Vol 167 ◽  
pp. 55-94 ◽  
Author(s):  
Gudlaugur Thorbergsson ◽  
Masaaki Umehara

AbstractWe give optimal lower bounds for the number of sextactic points on a simple closed curve in the real projective plane. Sextactic points are after inflection points the simplest projectively invariant singularities on such curves. Our method is axiomatic and can be applied in other situations.


1976 ◽  
Vol 19 (3) ◽  
pp. 373-374 ◽  
Author(s):  
James A. Schafer

Let T2 = S1×S1, where S1 is the unit circle, and let {α, β} be the integral basis of H1(T2) induced by the 2 S1-factors. It is well known that 0 ≠ X = pα + qβ is represented by a simple closed curve (i.e. the homotopy class αppq contains a simple closed curve) if and only if gcd(p, q) = 1. It is the purpose of this note to extend this theorem to oriented surfaces of genus g.


1960 ◽  
Vol 12 ◽  
pp. 209-230 ◽  
Author(s):  
R. H. Bing

One of the unsolved problems of plane topology is the following:Question. What are the homogeneous bounded plane continua?A search for the answer has been punctuated by some erroneous results. For a history of the problem see (6).The following examples of bounded homogeneous plane continua are known : a point; a simple closed curve; a pseudo arc (2, 12); and a circle of pseudo arcs (6). Are there others?The only one of the above examples that contains an arc is a simple closed curve. In this paper we show that there are no other such examples. We list some previous results that point in this direction. Mazurkiewicz showed (11) that the simple closed curve is the only non-degenerate homogeneous bounded plane continuum that is locally connected. Cohen showed (8) that the simple closed curve is the only homogeneous bounded plane continuum that contains a simple closed curve.


2012 ◽  
Vol 33 (5) ◽  
pp. 1584-1610
Author(s):  
JULIANA XAVIER

AbstractMichael Handel proved in [A fixed-point theorem for planar homeomorphisms. Topology38 (1999), 235–264] the existence of a fixed point for an orientation-preserving homeomorphism of the open unit disk that can be extended to the closed disk, provided that it has points whose orbits form an oriented cycle of links at infinity. Later, Patrice Le Calvez gave a different proof of this theorem based only on Brouwer theory and plane topology arguments in [Une nouvelle preuve du théorème de point fixe de Handel. Geom. Topol.10(2006), 2299–2349]. These methods improved the result by proving the existence of a simple closed curve of index 1. We give a new, simpler proof of this improved version of the theorem and generalize it to non-oriented cycles of links at infinity.


1962 ◽  
Vol 14 ◽  
pp. 21-38 ◽  
Author(s):  
W. T. Tutte

Let P be a closed region in the plane bounded by a simple closed curve, and let S be a simplicial dissection of P. We may say that S is a dissection of P into a finite number α of triangles so that no vertex of any one triangle is an interior point of an edge of another. The triangles are ‘'topological” triangles and their edges are closed arcs which need not be straight segments. No two distinct edges of the dissection join the same two vertices, and no two triangles have more than two vertices in common.


2017 ◽  
Vol 5 ◽  
Author(s):  
TERENCE TAO

The ‘square peg problem’ or ‘inscribed square problem’ of Toeplitz asks if every simple closed curve in the plane inscribes a (nondegenerate) square, in the sense that all four vertices of that square lie on the curve. By a variety of arguments of a ‘homological’ nature, it is known that the answer to this question is positive if the curve is sufficiently regular. The regularity hypotheses are needed to rule out the possibility of arbitrarily small squares that are inscribed or almost inscribed on the curve; because of this, these arguments do not appear to be robust enough to handle arbitrarily rough curves. In this paper, we augment the homological approach by introducing certain integrals associated to the curve. This approach is able to give positive answers to the square peg problem in some new cases, for instance if the curve is the union of two Lipschitz graphs $f$, $g:[t_{0},t_{1}]\rightarrow \mathbb{R}$ that agree at the endpoints, and whose Lipschitz constants are strictly less than one. We also present some simpler variants of the square problem which seem particularly amenable to this integration approach, including a periodic version of the problem that is not subject to the problem of arbitrarily small squares (and remains open even for regular curves), as well as an almost purely combinatorial conjecture regarding the sign patterns of sums $y_{1}+y_{2}+y_{3}$ for $y_{1},y_{2},y_{3}$ ranging in finite sets of real numbers.


2011 ◽  
Vol 54 (2) ◽  
pp. 244-248
Author(s):  
D. Daniel ◽  
J. Nikiel ◽  
L. B. Treybig ◽  
H. M. Tuncali ◽  
E. D. Tymchatyn

AbstractA continuumis said to be Suslinian if it does not contain uncountably many mutually exclusive non-degenerate subcontinua. Fitzpatrick and Lelek have shown that a metric Suslinian continuum X has the property that the set of points at which X is connected im kleinen is dense in X. We extend their result to Hausdorff Suslinian continua and obtain a number of corollaries. In particular, we prove that a homogeneous, non-degenerate, Suslinian continuum is a simple closed curve and that each separable, non-degenerate, homogenous, Suslinian continuum is metrizable.


1968 ◽  
Vol 64 (2) ◽  
pp. 291-291
Author(s):  
P. H. Doyle

Theorem. A simple closed curve J in the plane E2separates E2.


2014 ◽  
Vol 56 (3) ◽  
pp. 681-689
Author(s):  
ZONGLIANG SUN

AbstractIn this paper, we consider the question about length distortions under quasiconformal mappings with respect to quadratic differential metrics. More precisely, let X and Y be closed Riemann surfaces with genus at least 2, and f: X → Y being a K-quasiconformal mapping. Given two quadratic differential metrics |q1| and |q2| with unit areas on X and Y respectively, whether there exists a constant $\mathcal C$ depending only on K such that $\frac{1}{\mathcal C} l_{q_1} (\gamma) \leq l_{q_2} (f(\gamma)) \leq \mathcal C l_{q_1} (\gamma)$ holds for any simple closed curve γ ⊂ X. Here lqi(α) denotes the infimum of the lengths of curves in the homotopy class of α with respect to the metric |qi|, i = 1, 2. We give positive answers to this question, including the aspects that the desired constant ${\mathcal C}$ explicitly depends on q1, q2 and K, and that the constant $\mathcal C$ is universal for all the quantities involved.


Sign in / Sign up

Export Citation Format

Share Document