scholarly journals Capacity optimization for radio resource allocation in cognitive networks

2021 ◽  
Author(s):  
Mohamed Elalem

With the rapid development of wireless services and applications, the currently radio spectrum is becoming more crowded. How to accommodate more wireless services and applications within the limited radio spectrum becomes a big challenge faced by modern society. Cognitive radio (CR) is proposed as a promising technology to tackle this challenge by introducing secondary users (SUs) to opportunistically or concurrently access the spectrum allocated to primary users (PUs). Currently, there are two prevalent CR models: the spectrum sharing model and the opportunistic spectrum access model. In the spectrum sharing model, the SUs are allowed to coexist with the PUs as long as the interferences from SUs do not degrade the quality of service (QoS) of PUs to an unacceptable level. In the opportunistic spectrum access model, SUs are allowed to access the spectrum only if the PUs are detected to be inactive. These two models known as underlay and overlay schemes, respectively. This thesis studies a number of topics in CR networks under the framework of these two schemes. First, studied cognitive radio transmissions under QoS delay constraints. Initially, we focused on the concept: effective capacity for cognitive radio channels in order to identify the performance in the presence of QoS constraints. Both underlay and overlay schemes are studied taking into consideration the activity of primary users, and assuming the general case of channel fading as Gamma distribution. For this setting, we further proposed a selection criterion by which the cognitive radio network can choose the adequate mode of operation. Then, we studied the cognitive radio transmissions focusing on Rayleigh fading channel and assumed that no prior channel knowledge is available at the transmitter and the receiver. We investigated the performance of pilot-assisted transmission strategies. In particular, we analyzed the channel estimation using minimum mean-square-error (MMSE) estimation, and analyzed efficient resource allocation strategies. In both cases, power allocations and effective capacity optimization were obtained. Effective capacity and interference constraint were analyzed in both single-band and multi-band spectrum sensing settings. Finally, we studied optimal access probabilities for cognitive radio network using Markov model to achieve maximum throughput for both CR schemes.

2021 ◽  
Author(s):  
Mohamed Elalem

With the rapid development of wireless services and applications, the currently radio spectrum is becoming more crowded. How to accommodate more wireless services and applications within the limited radio spectrum becomes a big challenge faced by modern society. Cognitive radio (CR) is proposed as a promising technology to tackle this challenge by introducing secondary users (SUs) to opportunistically or concurrently access the spectrum allocated to primary users (PUs). Currently, there are two prevalent CR models: the spectrum sharing model and the opportunistic spectrum access model. In the spectrum sharing model, the SUs are allowed to coexist with the PUs as long as the interferences from SUs do not degrade the quality of service (QoS) of PUs to an unacceptable level. In the opportunistic spectrum access model, SUs are allowed to access the spectrum only if the PUs are detected to be inactive. These two models known as underlay and overlay schemes, respectively. This thesis studies a number of topics in CR networks under the framework of these two schemes. First, studied cognitive radio transmissions under QoS delay constraints. Initially, we focused on the concept: effective capacity for cognitive radio channels in order to identify the performance in the presence of QoS constraints. Both underlay and overlay schemes are studied taking into consideration the activity of primary users, and assuming the general case of channel fading as Gamma distribution. For this setting, we further proposed a selection criterion by which the cognitive radio network can choose the adequate mode of operation. Then, we studied the cognitive radio transmissions focusing on Rayleigh fading channel and assumed that no prior channel knowledge is available at the transmitter and the receiver. We investigated the performance of pilot-assisted transmission strategies. In particular, we analyzed the channel estimation using minimum mean-square-error (MMSE) estimation, and analyzed efficient resource allocation strategies. In both cases, power allocations and effective capacity optimization were obtained. Effective capacity and interference constraint were analyzed in both single-band and multi-band spectrum sensing settings. Finally, we studied optimal access probabilities for cognitive radio network using Markov model to achieve maximum throughput for both CR schemes.


Author(s):  
Bhuvaneswari P. T. V. ◽  
Bino J.

Cognitive radio network (CRN) is an upcoming networking technology that can utilize both radio spectrum and wireless resources efficiently based on the information gathered from the past experience. There are two types of users in CRN, namely primary and secondary. PUs (PU) have the license to operate in certain spectrum band while the secondary (SU) or cognitive radio (CR) users do not have the license to operate in the desired band. However, they can opportunistically utilize the unused frequency bands. Spectrum sensing, spectrum management, spectrum sharing, and spectrum mobility are the four major functions of cognitive radio systems. The main objective of spectrum sensing is to provide better spectrum access to CR users, without causing any harmful interference to PUs. Sensing accuracy is considered as the most important factor to determine the performance of cognitive radio network. In this chapter, the challenges and requirement involved in spectrum sensing are detailed. Further, various spectrum sensing basic techniques are also discussed in detail.


In this paper, cooperative spectrum sharing in cognitive radio (CR) network is incorporated with multi-antenna based RF energy harvesting relays (EH). The performance has been analyzed in the presence of multiple primary users. The relays can harvest energy from source signal and interference from primary transmitter. The relays follow adaptive hybrid protocol (AHR) for forwarding the received signal from source to destination. Outage probability and achievable throughput have been analyzed using a time-splitting relaying (TSR) scheme at the destination where best relay selection (BRS) strategy is used. The outage performances of energy harvesting and non-energy harvesting model have been compared. Throughput and outage performance comparison for AF, DF and AHR have been analyzed. The effect of the number of primary users is also investigated. A trade-off is shown between the number of relays and the number of antennas to achieve the desired throughput. The results depict that the use of energy harvesting strategy in cognitive radio network can result in an energy-efficient solution for future wireless communication.


Author(s):  
Anusha M ◽  
Srikanth Vemuru ◽  
T Gunasekhar

A Cognitive Radio (CR) is a radio that can adjust its transmission limit based on available spectrum in its operational surroundings. Cognitive Radio Network (CRN) is made up of both the licensed users and unlicensed users with CR enable and disabled radios. CR’S supports to access dynamic spectrum and supports secondary user to access underutilized spectrum efficiently, which was allocated to primary users. In CRN’S most of the research was done on spectrum allocation, spectrum sensing and spectrum sharing. In this literature, we present various Medium Access (MAC) protocols of CRN’S. This study would provide an excellent study of MAC strategies.


Sign in / Sign up

Export Citation Format

Share Document