scholarly journals Distributed recommender system using multi-agent for social networks

2021 ◽  
Author(s):  
Lubaid Ahmed

Social networks have become significant tools due to the vast and useful information existing in them. The social platforms also act as the storage of entered choices of millions of users for various applications such as political surveys, research studies, marketing product preferences and many more. Social network recommender systems exploit this information and direct users in selecting their choices. It is clear that recommender systems should be efficient enough to be able to process the huge magnitude of data that has been generated in recent years by social network users. This research proposes a foundation of an efficient and scalable recommender system to be able to process large amount of data (i.e. Big data) in a short amount of time. The main goal is providing scalability and efficiency of the recommender system. The simulation of the prototype of such a distributed recommender system by using multi-agent based technologies shows promising results. These prototypes provide recommendations to users about other users with the similar interests in online and distributed manner as real recommender systems. The agents can simulate users or can be used as the containers of algorithms for comparing the similarity between users by different approaches, such as cosine similarity and clustering methods for testing and examining real scenarios. To be able to test these prototypes in agent-based simulation environment an agent-based framework is developed. This framework has three modules named social network crawler, social network simulator and employed prototype of the distributed recommender system that use different text and data mining algorithms. Finally, newly developed performance metric (called Scalability Factor) is introduced that shows the minimum number of servers needed to be able to run the agent systems in parallel. This thesis shows using a distributed and parallel model for recommender systems is the key to increase the speed of recommendation convergence and as a result to provide scalability. Multi-agent based simulation results, coupled with numerical analysis affirm that the proposed solution provides scalability and efficiency for recommender systems.

2021 ◽  
Author(s):  
Lubaid Ahmed

Social networks have become significant tools due to the vast and useful information existing in them. The social platforms also act as the storage of entered choices of millions of users for various applications such as political surveys, research studies, marketing product preferences and many more. Social network recommender systems exploit this information and direct users in selecting their choices. It is clear that recommender systems should be efficient enough to be able to process the huge magnitude of data that has been generated in recent years by social network users. This research proposes a foundation of an efficient and scalable recommender system to be able to process large amount of data (i.e. Big data) in a short amount of time. The main goal is providing scalability and efficiency of the recommender system. The simulation of the prototype of such a distributed recommender system by using multi-agent based technologies shows promising results. These prototypes provide recommendations to users about other users with the similar interests in online and distributed manner as real recommender systems. The agents can simulate users or can be used as the containers of algorithms for comparing the similarity between users by different approaches, such as cosine similarity and clustering methods for testing and examining real scenarios. To be able to test these prototypes in agent-based simulation environment an agent-based framework is developed. This framework has three modules named social network crawler, social network simulator and employed prototype of the distributed recommender system that use different text and data mining algorithms. Finally, newly developed performance metric (called Scalability Factor) is introduced that shows the minimum number of servers needed to be able to run the agent systems in parallel. This thesis shows using a distributed and parallel model for recommender systems is the key to increase the speed of recommendation convergence and as a result to provide scalability. Multi-agent based simulation results, coupled with numerical analysis affirm that the proposed solution provides scalability and efficiency for recommender systems.


Author(s):  
Bahareh Shadi Shams Zamenjani

t— the influence of social networks among people and at the same time inevitable spread of commercial use of them. Accordingly, in order to sell products, recommender systems designed based on user behavior on social networks, providing a variety of commercial offers tailored to the user. The accuracy of recommender systems that make recommendations to users, and how many of the proposals are accepted by the users is important. In this paper, a recommender system is designed based on user behavior in social network Facebook in two acts and suggests that users purchase their favorite products. The first step is to examine user behavior based on user interests will be given an offer to buy products. In the second stage recommender system uses data mining techniques and suggestions to the user that is associated with their previous purchases. This is real data and the real results of it and it is valid, as well as the results show a high level of accuracy recommender system is designed to offer suggestions to users.


2020 ◽  
Vol 17 (171) ◽  
pp. 20200667
Author(s):  
Raiyan Abdul Baten ◽  
Daryl Bagley ◽  
Ashely Tenesaca ◽  
Famous Clark ◽  
James P. Bagrow ◽  
...  

Creativity is viewed as one of the most important skills in the context of future-of-work. In this paper, we explore how the dynamic (self-organizing) nature of social networks impacts the fostering of creative ideas. We run six trials ( N = 288) of a web-based experiment involving divergent ideation tasks. We find that network connections gradually adapt to individual creative performances, as the participants predominantly seek to follow high-performing peers for creative inspirations. We unearth both opportunities and bottlenecks afforded by such self-organization. While exposure to high-performing peers is associated with better creative performances of the followers, we see a counter-effect that choosing to follow the same peers introduces semantic similarities in the followers’ ideas. We formulate an agent-based simulation model to capture these intuitions in a tractable manner, and experiment with corner cases of various simulation parameters to assess the generality of the findings. Our findings may help design large-scale interventions to improve the creative aptitude of people interacting in a social network.


2015 ◽  
Vol 98 (7) ◽  
pp. 22-33
Author(s):  
GAKU HASHIMOTO ◽  
TAKANORI FUJIWARA ◽  
MASAAKI SUZUKI ◽  
HIROSHI OKUDA ◽  
JUNJI ISE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document