scholarly journals Suboptimal rate adaptive resource allocation in multiuser OFDM communication systems

2021 ◽  
Author(s):  
Sanam Sadr

This thesis aims to study the performance of adaptive resource allocation in the downlink of multiuse OFDM systems with fixed or varialbe rate requirements (with fairness consideration) as well as low complexity algorithms for real-time implementations in practical systems. We first verify the simplifying assumption of flat transmit power over the entire bandwidth. Two different optimal and suboptimal power allocation schemes are applied in a single-user system and the decrease in the total throughput due to the presence of the power mask on subcarriers is measured. Based on the comparison of the achieved data rates, a flat transmit power is then assumed in the proposed suboptimal multiuser resource allocation algorithms. Two suboptimal resource allocation algorithms are then proposed using this simplifying assumption. The objective of the first algorithm is to maximize the total throughput while maintaining rate proportionality among the users. The proposed suboptimal algorithm prioritizes the user with the highest sensitivity to the subcarrier allocation and the variance over the subchannel gains is sued to define the sensitivity of each user. The second algorithm concerns rate adaptive resource allocation in multiuser OFDM systems with fixed rate constraints for each user. We propose a suboptimal joint subchannel and power allocation algorithm which attempts to maximize the total throughput wihile supporting the users with their minimum rate requirments. The main feature of this algorithm is its low complexity while achieving close to optimum capacity.

2021 ◽  
Author(s):  
Sanam Sadr

This thesis aims to study the performance of adaptive resource allocation in the downlink of multiuse OFDM systems with fixed or varialbe rate requirements (with fairness consideration) as well as low complexity algorithms for real-time implementations in practical systems. We first verify the simplifying assumption of flat transmit power over the entire bandwidth. Two different optimal and suboptimal power allocation schemes are applied in a single-user system and the decrease in the total throughput due to the presence of the power mask on subcarriers is measured. Based on the comparison of the achieved data rates, a flat transmit power is then assumed in the proposed suboptimal multiuser resource allocation algorithms. Two suboptimal resource allocation algorithms are then proposed using this simplifying assumption. The objective of the first algorithm is to maximize the total throughput while maintaining rate proportionality among the users. The proposed suboptimal algorithm prioritizes the user with the highest sensitivity to the subcarrier allocation and the variance over the subchannel gains is sued to define the sensitivity of each user. The second algorithm concerns rate adaptive resource allocation in multiuser OFDM systems with fixed rate constraints for each user. We propose a suboptimal joint subchannel and power allocation algorithm which attempts to maximize the total throughput wihile supporting the users with their minimum rate requirments. The main feature of this algorithm is its low complexity while achieving close to optimum capacity.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Sanam Sadr ◽  
Alagan Anpalagan ◽  
Kaamran Raahemifar

This paper aims to study the performance of low complexity adaptive resource allocation in the downlink of OFDMA systems with fixed or variable rate requirements (with fairness consideration). Two suboptimal resource allocation algorithms are proposed using the simplifying assumption of transmit power over the entire bandwidth. The objective of the first algorithm is to maximize the total throughput while maintaining rate proportionality among the users. The proposed suboptimal algorithm prioritizes the user with the highest sensitivity to the subcarrier allocation, and the variance over the subchannel gains is used to define the sensitivity of each user. The second algorithm concerns rate adaptive resource allocation in multiuser systems with fixed rate constraints. We propose a suboptimal joint subchannel and power allocation algorithm which prioritizes the users with the highest required data rates. The main feature of this algorithm is its low complexity while achieving the rate requirements.


2014 ◽  
Vol 80 (1) ◽  
pp. 51-69 ◽  
Author(s):  
Najib A. Odhah ◽  
Emad S. Hassan ◽  
Mohamad Abdelnaby ◽  
Waleed E. Al-Hanafy ◽  
Moawad I. Dessouky ◽  
...  

2014 ◽  
Vol 80 (1) ◽  
pp. 71-72 ◽  
Author(s):  
Najib A. Odhah ◽  
Emad S. Hassan ◽  
Mohamad Abd-Elnaby ◽  
Waleed E. Al-Hanafy ◽  
Moawad I. Dessouky ◽  
...  

Author(s):  
SHANMUGAVEL G ◽  
PRELLY K.E

Multiple antenna orthogonal frequency division multiple access (OFDMA) is a promising technique for the high downlink capacity in the next generation wireless systems, in which adaptive resource allocation would be an important research issue that can significantly improve the performance with guaranteed QoS for users. Moreover, most of the current source allocation algorithms are limited to the unicast system. In this paper, dynamic resource allocation is studied for multiple antenna OFDMA based systems which provide multicast service. The performance of multicast system is simulated and compared with that of the unicast system. Numerical results also show that the proposed algorithms improve the system capacity significantly compared with the conventional scheme.


Sign in / Sign up

Export Citation Format

Share Document