scholarly journals Modelling surface evolution in abrasive jet micromachining using level set methods

2021 ◽  
Author(s):  
Tom Burzynski

The time dependent surface evolution in abrasive jet micromachining (AJM) is described by a partial differential equation which is difficult to solve using analytical or traditional numerical techniques. These techniques can yield incorrect predicted profile evolution or fail altogether under certain conditions. More recently developed particle tracking cellular automaton simulations can address some of these limitations but are difficult to implement and are computationally expensive. In this work, level set methods (LSM) were introduced to develop novel surface evolution models to predict resulting feature shapes in AJM. Initially, a LSM-based numerical model was developed to predict the surface evolution of unmasked channels machined at normal and oblique jet impact angles (incidence), as well as masked micro-channels and micro-holes at normal incidence, in both brittle and ductile targets. This model was then extended to allow the prediction of: surface evolution of inclined masked micro-channels made using AJM at oblique incidence, where the developing profiles rapidly become multi-valued necessitating a more complex formulation; mask erosive wear by permitting surface evolution of both the mask and target micro-channels simultaneously at any jet incidence; and surface damage due to secondary particle strikes in brittle target micro-channels resulting from particle mask-to-target and target-to-target ricochets at any jet incidence. For all the models, a general ‘masking’ function was developed by applying previous concepts to model the adjustment to abrasive mass flux incident to the target or mask surfaces to reflect the range of particle sizes that are ‘visible’ to these surfaces. The models were also optimized for computational efficiency using an adaptive Narrow Band LSM scheme. All models were experimentally verified and, where possible, compared against existing models. Generally, good predictive capabilities and improvements over previous attempts in terms of feature prediction or execution time, were observed. The time dependent surface evolution in abrasive jet micromachining (AJM) is described by a partial differential equation which is difficult to solve using analytical or traditional numerical techniques. These techniques can yield incorrect predicted profile evolution or fail altogether under certain conditions. More recently developed particle tracking cellular automaton simulations can address some of these limitations but are difficult to implement and are computationally expensive.In this work, level set methods (LSM) were introduced to develop novel surface evolution models to predict resulting feature shapes in AJM. Initially, a LSM-based numerical model was developed to predict the surface evolution of unmasked channels machined at normal and oblique jet impact angles (incidence), as well as masked micro-channels and micro-holes at normal incidence, in both brittle and ductile targets.This model was then extended to allow the prediction of: surface evolution of inclined masked micro-channels made using AJM at oblique incidence, where the developing profiles rapidly become multi-valued necessitating a more complex formulation; mask erosive wear by permitting surface evolution of both the mask and target micro-channels simultaneously at any jet incidence; and surface damage due to secondary particle strikes in brittle target micro-channels resulting from particle mask-to-target and target-to-target ricochets at any jet incidence. For all the models, a general ‘masking’ functionwas developed by applying previous concepts to model the adjustment to abrasive mass flux incident to the target or mask surfaces to reflect the range of particle sizes that are ‘visible’ to these surfaces. The models were also optimized for computational efficiency using an adaptive Narrow Band LSM scheme.All models were experimentally verified and, where possible, compared against existing models. Generally, good predictive capabilities and improvements over previous attempts in terms of feature prediction or execution time, were observed.The proposed LSM-based models can be practical assistive tools during the micro-fabrication of complex MEMS and microfluidic devices using AJM.

2021 ◽  
Author(s):  
Tom Burzynski

The time dependent surface evolution in abrasive jet micromachining (AJM) is described by a partial differential equation which is difficult to solve using analytical or traditional numerical techniques. These techniques can yield incorrect predicted profile evolution or fail altogether under certain conditions. More recently developed particle tracking cellular automaton simulations can address some of these limitations but are difficult to implement and are computationally expensive. In this work, level set methods (LSM) were introduced to develop novel surface evolution models to predict resulting feature shapes in AJM. Initially, a LSM-based numerical model was developed to predict the surface evolution of unmasked channels machined at normal and oblique jet impact angles (incidence), as well as masked micro-channels and micro-holes at normal incidence, in both brittle and ductile targets. This model was then extended to allow the prediction of: surface evolution of inclined masked micro-channels made using AJM at oblique incidence, where the developing profiles rapidly become multi-valued necessitating a more complex formulation; mask erosive wear by permitting surface evolution of both the mask and target micro-channels simultaneously at any jet incidence; and surface damage due to secondary particle strikes in brittle target micro-channels resulting from particle mask-to-target and target-to-target ricochets at any jet incidence. For all the models, a general ‘masking’ function was developed by applying previous concepts to model the adjustment to abrasive mass flux incident to the target or mask surfaces to reflect the range of particle sizes that are ‘visible’ to these surfaces. The models were also optimized for computational efficiency using an adaptive Narrow Band LSM scheme. All models were experimentally verified and, where possible, compared against existing models. Generally, good predictive capabilities and improvements over previous attempts in terms of feature prediction or execution time, were observed. The time dependent surface evolution in abrasive jet micromachining (AJM) is described by a partial differential equation which is difficult to solve using analytical or traditional numerical techniques. These techniques can yield incorrect predicted profile evolution or fail altogether under certain conditions. More recently developed particle tracking cellular automaton simulations can address some of these limitations but are difficult to implement and are computationally expensive.In this work, level set methods (LSM) were introduced to develop novel surface evolution models to predict resulting feature shapes in AJM. Initially, a LSM-based numerical model was developed to predict the surface evolution of unmasked channels machined at normal and oblique jet impact angles (incidence), as well as masked micro-channels and micro-holes at normal incidence, in both brittle and ductile targets.This model was then extended to allow the prediction of: surface evolution of inclined masked micro-channels made using AJM at oblique incidence, where the developing profiles rapidly become multi-valued necessitating a more complex formulation; mask erosive wear by permitting surface evolution of both the mask and target micro-channels simultaneously at any jet incidence; and surface damage due to secondary particle strikes in brittle target micro-channels resulting from particle mask-to-target and target-to-target ricochets at any jet incidence. For all the models, a general ‘masking’ functionwas developed by applying previous concepts to model the adjustment to abrasive mass flux incident to the target or mask surfaces to reflect the range of particle sizes that are ‘visible’ to these surfaces. The models were also optimized for computational efficiency using an adaptive Narrow Band LSM scheme.All models were experimentally verified and, where possible, compared against existing models. Generally, good predictive capabilities and improvements over previous attempts in terms of feature prediction or execution time, were observed.The proposed LSM-based models can be practical assistive tools during the micro-fabrication of complex MEMS and microfluidic devices using AJM.


Author(s):  
Qian Ye ◽  
Shikui Chen

The advance in computational science and engineering allows people to simulate the additive manufacturing (AM) process at high fidelity, which has turned out to be a valid way to model, predict, and even design the AM processes. In this paper, we propose a new method to simulate the melting process of metal powder-based AM. The governing physics is described using partial differential equations for heat transfer and Laminar flow. Level set methods are applied to track the free surface motion of the molten metal flow. Some fundamental issues in the metal-based AM process, including free surface evolution, phase transitions, and velocity field calculation, are explored, which help us gain insight into the metal-based AM process. The convergence problem is also examined to improve the efficiency in solving this multiphysics problem.


2017 ◽  
Author(s):  
Qian Ye ◽  
Shikui Chen

Modern computer technology enables people to simulate additive manufacturing (AM) process at high fidelity, which has proven to be an effective way to analyze, predict, and design the AM processes. In this paper, a new method is proposed to simulate the melting process of metal powder based AM. The physics is described using partial differential equations for heat transfer and Laminar flow. The level set methods are employed to track the motion of free surface between liquid and solid phases. The issues, including free surface evolution, phase changes, and velocity field calculation are investigated. The convergence problem is examined in order to improve the efficiency of solving this multiphysics problem.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Mohammed M. Abdelsamea ◽  
Giorgio Gnecco ◽  
Mohamed Medhat Gaber ◽  
Eyad Elyan

Most Active Contour Models (ACMs) deal with the image segmentation problem as a functional optimization problem, as they work on dividing an image into several regions by optimizing a suitable functional. Among ACMs, variational level set methods have been used to build an active contour with the aim of modeling arbitrarily complex shapes. Moreover, they can handle also topological changes of the contours. Self-Organizing Maps (SOMs) have attracted the attention of many computer vision scientists, particularly in modeling an active contour based on the idea of utilizing the prototypes (weights) of a SOM to control the evolution of the contour. SOM-based models have been proposed in general with the aim of exploiting the specific ability of SOMs to learn the edge-map information via their topology preservation property and overcoming some drawbacks of other ACMs, such as trapping into local minima of the image energy functional to be minimized in such models. In this survey, we illustrate the main concepts of variational level set-based ACMs, SOM-based ACMs, and their relationship and review in a comprehensive fashion the development of their state-of-the-art models from a machine learning perspective, with a focus on their strengths and weaknesses.


Sign in / Sign up

Export Citation Format

Share Document