active contour
Recently Published Documents


TOTAL DOCUMENTS

2219
(FIVE YEARS 392)

H-INDEX

54
(FIVE YEARS 8)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 206
Author(s):  
Yanshan Zhang ◽  
Yuru Tian

Image segmentation technology is dedicated to the segmentation of intensity inhomogeneous at present. In this paper, we propose a new method that incorporates fractional varying-order differential and local fitting energy to construct a new variational level set active contour model. The energy functions in this paper mainly include three parts: the local term, the regular term and the penalty term. The local term combined with fractional varying-order differential can obtain more details of the image. The regular term is used to regularize the image contour length. The penalty term is used to keep the evolution curve smooth. True positive (TP) rate, false positive (FP) rate, precision (P) rate, Jaccard similarity coefficient (JSC), and Dice similarity coefficient (DSC) are employed as the comparative measures for the segmentation results. Experimental results for both synthetic and real images show that our method has more accurate segmentation results than other models, and it is robust to intensity inhomogeneous or noises.


Author(s):  
Divya K, Veena ◽  
Anand Jatti ◽  
M. J. Vidya ◽  
Revan Joshi ◽  
Srikar Gade

Panoramic dental x-ray, a two-dimensional dental x-ray that captures the entire mouth in a single image, is used for the initial screening of various dental anomalies. One such is Jaw bone cyst, which, if not identified earlier, may lead to complications which in turn may lead to disfigurement and loss of function. Hence processing of radiographic images plays a vital role in identifying and locating the cystic region and extracting related features to assist clinical experts in further analysis. Objective: To develop an application of active contour model, known as Geodesic Active Contour, to generate Panoramic Dental X-Ray, a single 2 D X-ray image of the entire mouth highlighting the dental specifications. Methods: The process involves the image conversion from the OPG image into grayscale, Contrast adjustment using intensity level slicing, edge smoothing, segmentation, and cyst segmentation by Morphological Geodesic Active Contour to obtain the results. Hence processing of radiographic images plays a vital role in identifying and locating the cystic region. It is crucial in extracting related features to assist clinical experts in further analysis. Conclusion: When efficient and accurate diagnostic methods exist, the treatment and cure become easy and concrete. Based on the morphological snake and level sets, it aims at identifying the boundary by minimizing the energy. Results: Using the structural similarity index, an accuracy of 97.6% is obtained. Advances in Knowledge: This process is advantageous as it is simpler, faster, and does not suffer from instability problems. Morphological methods improve their functional gradient descent by improving stability and speed. The hysteresis algorithm exhibits better edge detection performance, a significant reduction in computational time and scalability.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

This paper plans to develop a novel image compression model with four major phases. (i) Segmentation (ii) Feature Extraction (iii) ROI classification (iv) Compression. The image is segmented into two regions by Adaptive ACM. The result of ACM is the production of two regions, this model enables separate ROI classification phase. For performing this, the features corresponding to GLCM are extracted from the segmented parts. Further, they are subjected to classification via NN, in which new training algorithm is adopted. As a main novelty JA and WOA are merged together to form J-WOA with the aim of tuning the ACM (weighting factor and maximum iteration), and training algorithm of NN, where the weights are optimized. This model is referred as J-WOA-NN. This classification model exactly classifies the ROI regions. During the compression process, the ROI regions are handled by JPEG-LS algorithm and the non-ROI region are handled by wavelet-based lossy compression algorithm. Finally, the decompression model is carried out by adopting the same reverse process.


2022 ◽  
Vol 71 ◽  
pp. 103267
Author(s):  
Asraf Mohamed Moubark ◽  
Zainab Alomari ◽  
Mohd Hairi Mohd Zaman ◽  
Mohd Asyraf Zulkifley ◽  
Sawal Hamid Md Ali ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yafeng Feng ◽  
Xianguo Liu

Video event detection and annotation work is an important content of video analysis and the basis of video content retrieval. Basketball is one of the most popular types of sports. Event detection and labeling of basketball videos can help viewers quickly locate events of interest and meet retrieval needs. This paper studies the application of anisotropic diffusion in video image smoothing, denoising, and enhancement. An improved form of anisotropic diffusion that can be used for video image enhancement is analyzed. This paper studies the anisotropic diffusion method for coherent speckle noise removal and proposes a video image denoising method that combines anisotropic diffusion and stationary wavelet transform. This paper proposes an anisotropic diffusion method based on visual characteristics, which adds a factor of video image detail while smoothing, and improves the visual effect of diffusion. This article discusses how to apply anisotropic diffusion methods and ideas to video image segmentation. We introduced the classic watershed segmentation algorithm and used forward-backward diffusion to process video images to reduce oversegmentation, introduced the active contour model and its improved GVF Snake, and analyzed the idea of how to use anisotropic diffusion and improve the GVF Snake model to get a new GGVF Snake model. In the study of basketball segmentation of close-up shots, we propose an improved Hough transform method based on a variable direction filter, which can effectively extract the center and radius of the basketball. The algorithm has good robustness to basketball partial occlusion and motion blur. In the basketball segmentation research of the perspective shot, the commonly used object segmentation method based on the change area detection is very sensitive to noise and requires the object not to move too fast. In order to correct the basketball segmentation deviation caused by the video noise and the fast basketball movement, we make corrections based on the peak characteristics of the edge gradient. At the same time, the internal and external energy calculation methods of the traditional active contour model are improved, and the judgment standard of the regional optimal solution and segmentation validity is further established. In the basketball tracking research, an improved block matching method is proposed. On the one hand, in order to overcome the influence of basketball’s own rotation, this article establishes a matching criterion that has nothing to do with the location of the area. On the other hand, this article improves the diamond motion search path based on the basketball’s motion correlation and center offset characteristics to reduce the number of searches and improve the tracking speed.


Author(s):  
S. Bütüner ◽  
E. Şehirli

Abstract. The usage of computers and software in the biomedical field has been increasing and applications for doctors, clinicians, scientists and other users have been developed in the recent times. Manual, semi-automatic and fully automatic applications developed for bone fracture detection are one of the important studies in this field. Image segmentation, which is one of the image preprocessing steps in bone fracture detection, is an important step to obtain successful results with high accuracy. In this study, Otsu thresholding method, active contour method, k-means method, fuzzy c-mean method, Niblack thresholding method and max min thresholding range (MMTR) method are used on bone images obtained by Karabük University Training and Research Hospital. When any filters are not applied on images to remove noises, the most successful method is obtained by K-means method based on specificity and accuracy as 89,55% and 83,31% respectively. Niblack thresholding method has the highest sensitivity result as 92,45%.


Sign in / Sign up

Export Citation Format

Share Document