scholarly journals A note on wavelet expansions for dyadic BMO functions in spaces of homogeneous type

Author(s):  
Raquel Crescimbeni ◽  
Luis Nowak

We give a characterization of dyadic BMO spaces in terms of Haar wavelet coefficients in spaces of homogeneous type.

2005 ◽  
Vol 177 ◽  
pp. 1-29 ◽  
Author(s):  
Dachun Yang

In this paper, the author introduces the Morrey-Campanato spaces Lsp(X) and the spaces Cps(X) on spaces of homogeneous type including metric spaces and some fractals, and establishes some embedding theorems between these spaces under some restrictions and the Besov spaces and the Triebel-Lizorkin spaces. In particular, the author proves that Lsp(X) = Bs∞,∞(X) if 0 < s < ∞ and µ(X) < ∞. The author also introduces some new function spaces Asp(X) and Bsp(X) and proves that these new spaces when 0 < s < 1 and 1 < p < ∞ are just the Triebel-Lizorkin space Fsp,∞(X) if X is a metric space, and the spaces A1p(X) and B1p(X) when 1 < p < ∞ are just the Hajłasz-Sobolev spaces W1p(X). Finally, as an application, the author gives a new characterization of the Hajłasz-Sobolev spaces by making use of the sharp maximal function.


Sign in / Sign up

Export Citation Format

Share Document