Mathematical simulation of turbulent combustion of carbon in the problems of white dwarf mergers and explosions of the type Ia supernovae

2021 ◽  
Vol 24 (3) ◽  
pp. 30-38
Author(s):  
I. M. Kulikov
2004 ◽  
Vol 194 ◽  
pp. 111-112
Author(s):  
Lilia Ferrario

AbstractI argue that the observational evidence for white dwarf-white dwarf mergers supports the view that they give rise to ultra-massive white dwarfs or neutron stars through accretion induced collapse. The implications for the progenitors of Type Ia SNe are discussed.


2011 ◽  
Vol 7 (S281) ◽  
pp. 162-165 ◽  
Author(s):  
J. Mikołajewska

AbstractSymbiotic stars are interacting binaries in which the first-formed white dwarf accretes and burns material from a red giant companion. This paper aims at presenting physical characteristics of these objects and discussing their possible link with progenitors of Type Ia supernovae.


1992 ◽  
Vol 151 ◽  
pp. 225-234
Author(s):  
J. Craig Wheeler

Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.


2004 ◽  
Vol 215 ◽  
pp. 571-572 ◽  
Author(s):  
S.-C. Yoon ◽  
N. Langer

Classical studies of accreting white dwarfs have assumed spherical symmetry. However, it is believed that in close binary systems the transfered matter carries angular momentum to spin up the accreting star. Here, we present preliminary results of CO white dwarf models which accrete helium rich matter with effects of rotation considered, in the context of the Sub-Chandrasekhar mass scenario for Type Ia supernovae.


2011 ◽  
Vol 7 (S281) ◽  
pp. 154-161 ◽  
Author(s):  
G. C. Anupama

AbstractRecurrent novae (RNe) belong to the group of cataclysmic variables that exhibit nova outbursts at intervals on the order of decades. They are rare, with 10 Galactic RNe known to date. Two are known in the LMC, while there are a few suspected RNe in M31. Nova outburst models require a high accretion rate on a massive white dwarf to explain the recurring nova outbursts, making this class of objects one of the most likely progenitor binary systems of Type Ia supernovae. The observational properties of the known Galactic recurrent novae are presented here, together with some discussion on the recent outbursts of RS Ophiuchi (2006), U Scorpii (2010), and T Pyxidis (2011).


Author(s):  
Laura Chomiuk

AbstractSN 2011fe is the nearest supernova of Type Ia (SN Ia) discovered in the modern multi-wavelength telescope era, and it also represents the earliest discovery of an SN Ia to date. As a normal SN Ia, SN 2011fe provides an excellent opportunity to decipher long-standing puzzles about the nature of SNe Ia. In this review, we summarise the extensive suite of panchromatic data on SN 2011fe and gather interpretations of these data to answer four key questions: (1) What explodes in an SN Ia? (2) How does it explode? (3) What is the progenitor of SN 2011fe? and (4) How accurate are SNe Ia as standardisable candles? Most aspects of SN 2011fe are consistent with the canonical picture of a massive CO white dwarf undergoing a deflagration-to-detonation transition. However, there is minimal evidence for a non-degenerate companion star, so SN 2011fe may have marked the merger of two white dwarfs.


Sign in / Sign up

Export Citation Format

Share Document