scholarly journals Characterization of Ion Exchange Membranes with Special Surface Structure

Author(s):  
Eliška Stránská ◽  
Kristýna Weinertová ◽  
David Neděla ◽  
Jan Křivčík

This article focuses on the preparation of the heterogeneous ion exchange membrane with a special surface structure made with three types of knitted fabric. The special surface structure of ion exchange membranes can be useful for the intensification of mass transfer processes in electrodialysis.Three types of structured ion exchange membranes were prepared together with a membrane with a flat surface to compare the influence of geometrical structures on the behaviour of ion exchange membrane properties. Electrochemical, mechanical and physical properties were determined. Structured membranes exhibited comparable electrochemical and physical properties to the flat ion exchange membrane. Some transport parameters were measured in an electrodialysis stack with two concentrations of solution. Two electrodialysis stacks with different sizes of active area were used for comparison. Improving efficiency and mass flux was not confirmed. It was not demonstrated that structured IEMs were not better than IEMs with the flat surface.

2014 ◽  
Vol 7 (9) ◽  
pp. 2986-2998 ◽  
Author(s):  
Shuang Gu ◽  
Ke Gong ◽  
Emily Z. Yan ◽  
Yushan Yan

A redox-flow-battery cell design with multiple ion-exchange membranes is provided to enable combinations of any redox pairs and supporting electrolytes.


2011 ◽  
Vol 63 (10) ◽  
pp. 2207-2212
Author(s):  
A. R. Ricardo ◽  
S. Velizarov ◽  
J. G. Crespo ◽  
M. A. M. Reis

The present study focuses on investigating the effects of biological compartment conditions on the transport of nitrate and perchlorate in an Ion Exchange Membrane Bioreactor (IEMB). In this hybrid process, the transport depends not only on the membrane properties but also on the biological compartment conditions. The experiments were planned according to the Plackett-Burman statistical design in order to cover a broader range of experimental conditions, under which a previously developed mechanistic transport model was not able to predict correctly the transport fluxes of the target pollutants. Using Principal Component Analysis, it was possible to identify not only the concentrations of target (nitrate and perchlorate) and of major driving counter-ion (chloride) but also those of some biomedium components (e.g. ammonia, ethanol and sulphate) as variables that affect the transport rate of micropollutants across the membrane. These conclusions are based on the loadings of the two first principal components that describe 84% of the data variance. The present study also revealed that the hydraulic retention time and the hydrodynamic conditions in the biocompartment have a minor contribution to the micropollutants transport. The results obtained are important for process optimization purposes.


2019 ◽  
Vol 7 (10) ◽  
pp. 5794-5802 ◽  
Author(s):  
Xiujun Yue ◽  
Qian He ◽  
Hee-Dae Lim ◽  
Ping Liu

A hierarchically structured composite ion exchange membrane is developed to solve the trade-off between conductivity and selectivity.


Sign in / Sign up

Export Citation Format

Share Document