scholarly journals Existence of solutions for nonlocal boundary value problem for Caputo nonlinear fractional differential inclusion

2018 ◽  
Vol 1 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Bouteraa Noureddine ◽  
Slimane Benaicha



2016 ◽  
Vol 56 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Katarzyna Szymańska-Dębowska

Abstract This work is devoted to the existence of solutions for a system of nonlocal resonant boundary value problem $$\matrix{{x'' = f(t,x),} \hfill & {x'(0) = 0,} \hfill & {x'(1) = {\int_0^1 {x(s)dg(s)},} }} $$ where f : [0, 1] × ℝk → ℝk is continuous and g : [0, 1] → ℝk is a function of bounded variation.



2016 ◽  
Vol 53 (1) ◽  
pp. 42-52
Author(s):  
Katarzyna Szymańska-Dȩbowska

The paper focuses on existence of solutions of a system of nonlocal resonant boundary value problems , where f : [0, 1] × ℝk → ℝk is continuous and g : [0, 1] → ℝk is a function of bounded variation. Imposing on the function f the following condition: the limit limλ→∞f(t, λ a) exists uniformly in a ∈ Sk−1, we have shown that the problem has at least one solution.



Author(s):  
Aurelian Cernea

Abstract We study a boundary value problem associated to a fractional differential inclusion with “maxima”. Several existence results are obtained by using suitable fixed point theorems when the right hand side has convex or non convex values.



Sign in / Sign up

Export Citation Format

Share Document