Existence results for a second order nonlocal boundary value problem at resonance

2016 ◽  
Vol 53 (1) ◽  
pp. 42-52
Author(s):  
Katarzyna Szymańska-Dȩbowska

The paper focuses on existence of solutions of a system of nonlocal resonant boundary value problems , where f : [0, 1] × ℝk → ℝk is continuous and g : [0, 1] → ℝk is a function of bounded variation. Imposing on the function f the following condition: the limit limλ→∞f(t, λ a) exists uniformly in a ∈ Sk−1, we have shown that the problem has at least one solution.

2016 ◽  
Vol 56 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Katarzyna Szymańska-Dębowska

Abstract This work is devoted to the existence of solutions for a system of nonlocal resonant boundary value problem $$\matrix{{x'' = f(t,x),} \hfill & {x'(0) = 0,} \hfill & {x'(1) = {\int_0^1 {x(s)dg(s)},} }} $$ where f : [0, 1] × ℝk → ℝk is continuous and g : [0, 1] → ℝk is a function of bounded variation.


1995 ◽  
Vol 18 (4) ◽  
pp. 705-710 ◽  
Author(s):  
Chaitan P. Gupta

Letf:[0,1]×R2→Rbe function satisfying Caratheodory's conditions ande(t)∈L1[0,1]. Letη∈(0,1),ξi∈(0,1),ai≥0,i=1,2,…,m−2, with∑i=1m−2ai=1,0<ξ1<ξ2<…<ξm−2<1be given. This paper is concerned with the problem of existence of a solution for the following boundary value problemsx″(t)=f(t,x(t),x′(t))+e(t),0<t<1,x′(0)=0,x(1)=x(η),x″(t)=f(t,x(t),x′(t))+e(t),0<t<1,x′(0)=0,x(1)=∑i=1m−2aix(ξi).Conditions for the existence of a solution for the above boundary value problems are given using Leray Schauder Continuation theorem.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Kareem Alanazi ◽  
Meshal Alshammari ◽  
Paul Eloe

Abstract A quasilinearization algorithm is developed for boundary value problems at resonance. To do so, a standard monotonicity condition is assumed to obtain the uniqueness of solutions for the boundary value problem at resonance. Then the method of upper and lower solutions and the shift method are applied to obtain the existence of solutions. A quasilinearization algorithm is developed and sequences of approximate solutions are constructed, which converge monotonically and quadratically to the unique solution of the boundary value problem at resonance. Two examples are provided in which explicit upper and lower solutions are exhibited.


2020 ◽  
Vol 13 (1) ◽  
pp. 33-47
Author(s):  
Samuel Iyase ◽  
Abiodun Opanuga

This paper investigates the solvability of a class of higher order nonlocal boundaryvalue problems of the formu(n)(t) = g(t, u(t), u0(t)· · · u(n−1)(t)), a.e. t ∈ (0, ∞)subject to the boundary conditionsu(n−1)(0) = (n − 1)!ξn−1u(ξ), u(i)(0) = 0, i = 1, 2, . . . , n − 2,u(n−1)(∞) = Z ξ0u(n−1)(s)dA(s)where ξ > 0, g : [0, ∞) × <n −→ < is a Caratheodory’s function,A : [0, ξ] −→ [0, 1) is a non-decreasing function with A(0) = 0, A(ξ) = 1. The differential operatoris a Fredholm map of index zero and non-invertible. We shall employ coicidence degree argumentsand construct suitable operators to establish existence of solutions for the above higher ordernonlocal boundary value problems at resonance.


Sign in / Sign up

Export Citation Format

Share Document