scholarly journals Trend on Decommissioning Technology of Nuclear Power Plants in 21st Century (8)

2010 ◽  
Vol 52 (4) ◽  
pp. 219-224
Author(s):  
Minoru MURATA
2000 ◽  
Author(s):  
James H. Nordahl

Abstract The purpose of this paper will be to discuss the role of nuclear power in world energy production during the 21st century. Nuclear power is currently a significant source of the global electricity supply, providing approximately 16% of the world’s electricity, and world consumption of nuclear power is continuing to grow. Worldwide nuclear capacity is projected to increase from 349 gigawatts (in 1998) to 368 gigawatts in 2010. Much of this near-term increase in nuclear capacity is due to aggressive plans for nuclear capacity expansion in Asia. Longer term high growth projections for nuclear power include assumptions of limited reactor aging effects, with more reactors operating after license renewals. In early 2000, the USNRC issued the first license renewals for nuclear power plants, for a 20 year extension beyond the expiration of the initial license term. In addition, utilities have already notified the USNRC of plans to submit renewal applications for more than 20 units by 2003. License renewal is expected to be an attractive option for companies as the most inexpensive means of future electricity generation. Another factor pointing towards the positive prospects for nuclear power in the future are the substantial improvements seen in plant safety, reliability and output over the last two decades. Due to improved management practices, higher reliability and output, and shorter refueling outages, the average production cost of US nuclear power plants has steadily decreased over the last five years. Based solely on economic factors, most US nuclear units should be able to compete in a competitive electricity market. Many additional factors point to nuclear power as an energy source which will become increasingly important in the 21st century. These factors include environmental considerations such as carbon emissions from fossil fuels, reduced waste quantities produced by nuclear power, and the security of supply of uranium reserves.


Author(s):  
Marjorie B. Bauman ◽  
Richard F. Pain ◽  
Harold P. Van Cott ◽  
Margery K. Davidson

2010 ◽  
pp. 50-56 ◽  
Author(s):  
Pablo T. León ◽  
Loreto Cuesta ◽  
Eduardo Serra ◽  
Luis Yagüe

Author(s):  
R. Z. Aminov ◽  
A. N. Bayramov ◽  
M. V. Garievskii

The paper gives the analysis of the problem of the primary current frequency regulation in the power system, as well as the basic requirements for NPP power units under the conditions of involvement in the primary regulation. According to these requirements, the operation of NPPs is associated with unloading and a corresponding decrease in efficiency. In this regard, the combination of nuclear power plants with a hydrogen complex is shown to eliminate the inefficient discharge mode which allows the steam turbine equipment and equipment of the reactor facility to operate in the basic mode at the nominal power level. In addition, conditions are created for the generation and accumulation of hydrogen and oxygen during the day, as well as additionally during the nighttime failure of the electrical load which allows them to be used to generate peak power.  The purpose of the article is to assess the systemic economic effect as a result of the participation of nuclear power plants in combination with the hydrogen complex in the primary control of the current frequency in the power sys-tem, taking into account the resource costs of the main equipment. In this regard, the paper gives the justification of cyclic loading of the main equipment of the hydrogen complex: metal storage tanks of hydrogen and oxygen, compressor units, hydrogen-oxygen combustion chamber of vapor-hydrogen overheating of the working fluid in the steam turbine cycle of a nuclear power plant. The methodological foundations for evaluating the working life of equipment under cyclic loading with the participation in the primary frequency control by the criterion of the growth rate of a fatigue crack are described. For the equipment of the hydrogen complex, the highest intensity of loading is shown to occur in the hydrogen-oxygen combustion chamber due to high thermal stresses.  The system economic effect is estimated and the effect of wear of the main equipment under cyclic loading is shown. Under the conditions of combining NPP power units with a hydrogen complex, the efficiency of primary reg-ulation is shown to depend significantly on: the cost of equipment subjected to cyclic loading; frequency and intensity of cyclic loading; the ratio of the tariff for peak electricity, and the cost of electricity of nuclear power plants.  Based on the developed methodology for assessing the effectiveness of the participation of nuclear power plants with a hydrogen complex in the primary frequency control, taking into account the damage to the equipment, the use of the hydrogen complex is shown to provide a tangible economic effect compared with the option of unloading nuclear power plants with direct participation in frequency control.


Sign in / Sign up

Export Citation Format

Share Document