scholarly journals On the Exponential Diophantine Equation (132m) + (6r + 1)n = z2

2021 ◽  
Vol 13 (3) ◽  
pp. 845-849
Author(s):  
S. Aggarwal ◽  
S. Kumar

Nowadays, mathematicians are very interested in discovering new and advanced methods for determining the solution of Diophantine equations. Diophantine equations are those equations that have more unknowns than equations. Diophantine equations appear in astronomy, cryptography, abstract algebra, coordinate geometry and trigonometry. Congruence theory plays an important role in finding the solution of some special type Diophantine equations. The absence of any generalized method, which can handle each Diophantine equation, is challenging for researchers. In the present paper, the authors have discussed the existence of the solution of exponential Diophantine equation  (132m) + (6r + 1)n = Z2, where m, n, r, z are whole numbers. Results of the present paper show that the exponential Diophantine equation (132m) + (6r + 1)n = Z2, where m, n, r, z are whole numbers, has no solution in the whole number.

2021 ◽  
Vol 2070 (1) ◽  
pp. 012015
Author(s):  
Komon Paisal ◽  
Pailin Chayapham

Abstract This Diophantine is an equation that many researchers are interested in and studied in many form such 3x +5y · 7z = u2, (x+1)k + (x+2)k + … + (2x)k = yn and kax + lby = cz. The extensively studied form is ax + by = cz. In this paper we show that the Diophantine equations 17x +83y = z2 and 29x +71y = z2 has a unique non – negative integer solution (x, y, z) = (1,1,10)


2014 ◽  
Vol 64 (5) ◽  
Author(s):  
Jianping Wang ◽  
Tingting Wang ◽  
Wenpeng Zhang

AbstractLet n be a positive integer. In this paper, using the results on the existence of primitive divisors of Lucas numbers and some properties of quadratic and exponential diophantine equations, we prove that if n ≡ 3 (mod 6), then the equation x 2 + (3n 2 + 1)y = (4n 2 + 1)z has only the positive integer solutions (x, y, z) = (n, 1, 1) and (8n 3 + 3n, 1, 3).


2020 ◽  
Vol 55 (2) ◽  
pp. 195-201
Author(s):  
Maohua Le ◽  
◽  
Gökhan Soydan ◽  

Let A, B be positive integers such that min{A,B}>1, gcd(A,B) = 1 and 2|B. In this paper, using an upper bound for solutions of ternary purely exponential Diophantine equations due to R. Scott and R. Styer, we prove that, for any positive integer n, if A >B3/8, then the equation (A2 n)x + (B2 n)y = ((A2 + B2)n)z has no positive integer solutions (x,y,z) with x > z > y; if B>A3/6, then it has no solutions (x,y,z) with y>z>x. Thus, combining the above conclusion with some existing results, we can deduce that, for any positive integer n, if B ≡ 2 (mod 4) and A >B3/8, then this equation has only the positive integer solution (x,y,z)=(1,1,1).


2015 ◽  
Vol 3 (2) ◽  
Author(s):  
Jayashree Nair ◽  
T. Padma

This paper describes an authentication scheme that uses Diophantine equations based generation of the secret locations to embed the authentication and recovery watermark in the DWT sub-bands. The security lies in the difficulty of finding a solution to the Diophantine equation. The scheme uses the content invariant features of the image as a self-authenticating watermark and a quantized down sampled approximation of the original image as a recovery watermark for visual authentication, both embedded securely using secret locations generated from solution of the Diophantine equations formed from the PQ sequences. The scheme is mildly robust to Jpeg compression and highly robust to Jpeg2000 compression. The scheme also ensures highly imperceptible watermarked images as the spatio –frequency properties of DWT are utilized to embed the dual watermarks.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1813
Author(s):  
S. Subburam ◽  
Lewis Nkenyereye ◽  
N. Anbazhagan ◽  
S. Amutha ◽  
M. Kameswari ◽  
...  

Consider the Diophantine equation yn=x+x(x+1)+⋯+x(x+1)⋯(x+k), where x, y, n, and k are integers. In 2016, a research article, entitled – ’power values of sums of products of consecutive integers’, primarily proved the inequality n= 19,736 to obtain all solutions (x,y,n) of the equation for the fixed positive integers k≤10. In this paper, we improve the bound as n≤ 10,000 for the same case k≤10, and for any fixed general positive integer k, we give an upper bound depending only on k for n.


2010 ◽  
Vol 144 (4) ◽  
pp. 315-322
Author(s):  
Mario Huicochea

2018 ◽  
Vol 36 (3) ◽  
pp. 173-192
Author(s):  
Ahmet Tekcan ◽  
Seyma Kutlu

Let $k\geq 1$ be an integer and let $P=k+2,Q=k$ and $D=k^{2}+4$. In this paper, we derived some algebraic properties of quadratic ideals $I_{\gamma}$ and indefinite quadratic forms $F_{\gamma }$ for quadratic irrationals $\gamma$, and then we determine the set of all integer solutions of the Diophantine equation $F_{\gamma }^{\pm k}(x,y)=\pm Q$.


Sign in / Sign up

Export Citation Format

Share Document