scholarly journals Identifikasi Pendekatan Shallow Water Equation Dalam Simulasi 2D Gelombang Tsunami di Pantai Keburuhan Purworejo

2020 ◽  
Vol 18 (1) ◽  
pp. 127-152
Author(s):  
Benny Hartanto ◽  
Ningrum Astriawati

Kabupaten Purworejo merupakan salah satu dari lima daerah yang terkena dampak run-up tsunami Jawa 17 Juli 2006. Berdasarkan hasil Rapid Survey oleh BPDP dan BPPT, sepanjang Pantai Keburuhan merupakan lokasi terjadinya run-up tsunami di Kabupaten Purworejo di koordinat 109.912 LS -7.85 BT sebesar 1,7 meter. Tujuan dari penelitian ini adalah memperkirakan waktu tempuh tsunami, distribusi tinggi gelombang tsunami dan daerah jangkauan tsunami akibat dampak gempa tsunami Jawa 17 Juli 2006 di Pantai Keburuhan, Purworejo. Metode yang digunakan adalah metode deskriptif analitis dengan pendekatan kuantitatif. Data yang digunakan pada penelitian ini adalah titik tinggi, batimetri, parameter gempa, peramalan pasang surut wilayah perairan Pantai Keburuhan, data citra Geo Eye 1, dan kelerengan pantai. Pemodelan tsunami menggunakan perangkat lunak COMCOT v1.7 dengan kejadian gempa Jawa 17 Juli 2006. Berdasarkan pengolahan data, diketahui bahwa kecepatan gelombang maksimal sebesar 3.8788 m/s. Pada menit ke- 40, amplitudo awal gelombang tsunami sebesar 1.644  meter telah mencapai Pantai Keburuhan. Daerah jangkauan tsunami terluas dan jarak jangkauan maksimum terjauh  terjadi di Pantai Keburuhan adalah 1,23 km2 dan 1,4 km. Berdasarkan hasil verifikasi dengan nilai RSR sebesar 0,26. Hasil validasi simulasi tsunami menggunakan COMCOT v1.7 diketahui bahwa tinggi run-up tsunami model sudah cukup sesuai dengan data run-up yang terjadi saat kejadian, dengan nilai RSR sebesar 0,29 dan CF sebesar 1,63.

2020 ◽  
Author(s):  
Ikha Magdalena ◽  
Antonio Hugo Respati Dewabrata ◽  
Alvedian Mauditra Aulia Matin ◽  
Adeline Clarissa ◽  
Muhammad Alif Aqsha

Abstract. Run-up is defined as sea wave up-rush on a beach. Run-up height is affected by many factors, including the shape of the bay. As an archipelagic country, Indonesia consists of thousands of islands with bays of diverse profiles, including Palu Bay, which is a well-known example of a bay with a drastically-increasing wave run-up height. In the case of the 2018 Palu tsunami, scientists found that the incident wave was amplified by the shape of the bay. The amplifying wave played a large role in the significant increase of run-up height. The run-up in question caused severe inundation, which led to a high number of casualties and damages. Therefore a mathematical model will be constructed to investigate the wave run-up. The bay's geometry will be approximated using three linearly-inclined channel types: one of parabolic cross-section, one of triangular cross-section, and a plane beach. We use the generalized nonlinear shallow water equations, which is then solved analytically using a hodograph-type transformation. As a result, the nonlinear shallow water equation system can be reduced to a one-dimensional linear equation system. Assuming the incident wave is sinusoidal, we can obtain a simple formula for calculating maximum run-up height on the shoreline.


PAMM ◽  
2021 ◽  
Vol 20 (S1) ◽  
Author(s):  
Süleyman Yıldız ◽  
Pawan Goyal ◽  
Peter Benner ◽  
Bülent Karasözen

2016 ◽  
Vol 43 (4) ◽  
pp. 82-87 ◽  
Author(s):  
Kentaro Sano ◽  
Fumiya Kono ◽  
Naohito Nakasato ◽  
Alexander Vazhenin ◽  
Stanislav Sedukhin

Author(s):  
K. A. Belibassakis ◽  
G. A. Athanassoulis

A coupled-mode model is developed and applied to the transformation and run-up of dispersive water waves on plane beaches. The present work is based on the consistent coupled-mode theory for the propagation of water waves in variable bathymetry regions, developed by Athanassoulis & Belibassakis (1999) and extended to 3D by Belibassakis et al (2001), which is suitably modified to apply to a uniform plane beach. The key feature of the coupled-mode theory is a complete modal-type expansion of the wave potential, containing both propagating and evanescent modes, being able to consistently satisfy the Neumann boundary condition on the sloping bottom. Thus, the present approach extends previous works based on the modified mild-slope equation in conjunction with analytical solution of the linearised shallow water equations, see, e.g., Massel & Pelinovsky (2001). Numerical results concerning non-breaking waves on plane beaches are presented and compared with exact analytical solutions; see, e.g., Wehausen & Laitone (1960, Sec. 18). Also, numerical results are presented concerning the run-up of non-breaking solitary waves on plane beaches and compared with the ones obtained by the solution of the shallow-water wave equations, Synolakis (1987), Li & Raichlen (2002), and experimental data, Synolakis (1987).


Sign in / Sign up

Export Citation Format

Share Document