coupled mode
Recently Published Documents


TOTAL DOCUMENTS

1420
(FIVE YEARS 187)

H-INDEX

59
(FIVE YEARS 6)

Author(s):  
Pengju Yao ◽  
Biao Zeng ◽  
Enduo Gao ◽  
Hao Zhang ◽  
Chao Liu ◽  
...  

Abstract We propose a novel terahertz metamaterial structure based on patterned monolayer graphene. This structure produces an evident dual plasmon-induced transparency (PIT) phenomenon due to destructive interference between bright and dark modes. Since the Fermi level of graphene can be adjusted by an external bias voltage, the PIT phenomenon can be tuned by adjusting the voltage. Then the coupled-mode theory (CMT) is introduced to explore the internal mechanism of the PIT. After that, we investigate the variation of absorption rate at different graphene carrier mobilities, and it shows that the absorption rate of this structure can reach 50%, which is a guideline for the realization of graphene terahertz absorption devices. In addition, through the study of the slow-light performance for this structure, it is found that its group index is as high as 928, which provides a specific theoretical basis for the study of graphene slow-light devices.


2022 ◽  
Vol 14 (1) ◽  
pp. 207
Author(s):  
Xudong Sun ◽  
Min Xia ◽  
Tianfang Dai

High-resolution remote sensing images have been put into the application in remote sensing parsing. General remote sensing parsing methods based on semantic segmentation still have limitations, which include frequent neglect of tiny objects, high complexity in image understanding and sample imbalance. Therefore, a controllable fusion module (CFM) is proposed to alleviate the problem of implicit understanding of complicated categories. Moreover, an adaptive edge loss function (AEL) was proposed to alleviate the problem of the recognition of tiny objects and sample imbalance. Our proposed method combining CFM and AEL optimizes edge features and body features in a coupled mode. The verification on Potsdam and Vaihingen datasets shows that our method can significantly improve the parsing effect of satellite images in terms of mIoU and MPA.


2022 ◽  
pp. 169-217
Author(s):  
Katsunari Okamoto

Author(s):  
Aleksandr A. Lytaev ◽  
Igor Yu. Popov

The paper is devoted to simulation of interactions in the system of two symmetrical slab optical waveguides, that guide exactly two guided modes with the aim to use the directional coupler as a switcher for CNOT gate in the waveguide model of quantum-like computations. The coupling mode theory is used to solve the system of Maxwell equations. The asymptotic analysis is applied to simplify the system of differential equations, so an approximate analytic solution can be found. The solution obtained is used for the quick directional coupler parameters adjusting algorithm, so the power exchange in the system occurs as that of correctly working CNOT-gate switcher. Moreover, the finite difference method is used to solve the stricter system of equations, that additionally takes into account the process of power exchange between different order guided modes, so the computational error of the device can be estimated. It was obtained, that the possible size of the device may not exceed 1 mm in the largest dimension, while the computational error does not exceed 3%.


2021 ◽  
Vol 7 (50) ◽  
Author(s):  
Jiteng Sheng ◽  
Cheng Yang ◽  
Haibin Wu
Keyword(s):  

2021 ◽  
Author(s):  
Jinghui Ding ◽  
Yunping Qi ◽  
Yujiao Yuan ◽  
Haowen Chen ◽  
Weiming Liu ◽  
...  

Abstract A surface plasmon polarized structure consisting of two metal-insulator-metal (MIM) waveguide coupled with clockwork spring-shaped resonators are constructed in this paper, and its geometric parameters are controlled within a few hundred nanometers. The finite element method (FEM) and multimode interference coupled mode theory (MICMT) are used to simulate and theoretically calculate the optical response of the designed structure. By modifying the structural parameters of the system, the influence on the asymmetry of the Fano resonance line is studied. The changes of the transmission spectra at different refractive indexes are also investigated. Based on this asymmetric resonant line, the sensitivity and FOM* (figure of merit) value of the cavity with different parameters are measured. The sensitivity and FOM* under the best parameters are 1200 nm/RIU and 191.6, respectively. The surface plasmon structure proposed and the results in this paper are promising for applications in the field of high-performance sensing and micro-nano optical devices.


Author(s):  
Shuxian Chen ◽  
Junyi Li ◽  
Zicong Guo ◽  
Li Chen ◽  
Kunhua Wen ◽  
...  

Abstract Plasmon-induced transparency (PIT) is theoretically explored with a graphene metamaterial using finite-difference time-domain numerical simulations and coupled-mode-theory theoretical analysis. In this work, the proposed structure is consisted of one rectangular cavity and three strips to generate the PIT phenomenon. The PIT window can be regulated dynamically by adjusting the Fermi level of the graphene. Importantly, the modulation depth of the amplitude can reach 90.4%. The refractive index sensitivity of the PIT window is also investigated, and the simulation result shows that a sensitivity of 1.335 THz/RIU is achieved. Additionally, when the polarization angle of the incident light is changed gradually from 0˚ to 90˚, the performances of the structure are greatly affected. Finally, the proposed structure is particularly enlightening for the design of dynamically tuned terahertz devices.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012153
Author(s):  
A A Lytaev ◽  
I Yu Popov

Abstract The system of two coupled optical dual-mode waveguides is considered. The coupling of the system is studied to find a circuit for building a control switch for two qubit gates. The classical coupled mode theory is applied and the exact expressions for coupling coefficients are derived. The parameters of the system for performing the desired operations are numerically computed and analysed. The system describing the influence of intermodal interactions is solved numerically. The distortions are analysed.


Author(s):  
Hui Xu ◽  
Xiaojing Wang ◽  
Zhiquan Chen ◽  
Xuelei Li ◽  
Longhui He ◽  
...  

Abstract A very simple optical tunable device, which can realize multiple functions of frequency selection, reflection and slow light, is presented at the investigation. The proposed device is constructed by a periodic grating-like structure. There are two dielectrics (graphene and silicon) in a period of the equivalent grating. The incident light will strongly resonate with the graphene of electrostatic doping, forming an evanescent wave propagating along the surface of graphene, and this phenomenon is the surface plasmon. Under constructive interference of the polaritons, a unique plasmonic induced transparency phenomenon will be achieved. The induced transparency produced by this device can be well theoretically fitted by the bright and dark mode of optical equivalent cavity which can be called coupled mode theory (CMT). This theory can well analyze the influence of various modes and various losses between the function of this device. The device can use gate voltages for electrostatic doping in order to change the graphene carrier concentration and tune the optical performance of the device. Moreover, the length of the device in y-direction is will be much larger than the length of single cycle, providing some basis for realizing the fast tunable function and laying a foundation for the integration. Through a simulation and calculation, we can find that the group index and group delay of this device are as high as 515 and 0.257 picoseconds (ps) respectively, so it can provide a good construction idea for the slow light device. The proposed grating-like metamaterial structure can provide certain simulation and theoretical help for the optical tunable reflectors, absorbers, and slow light devices.


Sign in / Sign up

Export Citation Format

Share Document