Large Eddy Simulation of Fluctuating Mold Level - Effects of Nozzle Geometry on Oscillation Frequency

2012 ◽  
Vol 50 (2) ◽  
pp. 129-135 ◽  
2019 ◽  
Vol 116 (6) ◽  
pp. 636
Author(s):  
Peng Zhao ◽  
Yinhe Lin ◽  
Bin Yang ◽  
Kegao Liu ◽  
Jingrui Zhao ◽  
...  

Transient asymmetric circulations in the vertical-bending section of a continuous caster were simulated using a large eddy simulation (LES) model. The accuracy of the modelling was verified by comparing the jet behaviours, asymmetrical flow structures in the water model, and velocities reported in the literature. Coherent structures play an essential role in the circulations motion in the vertical-bending caster. A classical Q-criterion was introduced to detect and identify coherent vortices to investigate flow structures. The results indicate that coherent vortices in the lower circulation exhibit asymmetrical features, which further reveal the nature of the turbulence behind the flow structures in the caster. Monitoring points were then selected to investigate the motions of the “strong” and “weak” circulatory vortices and corresponding velocity variations at the interface between the vertical and bending section of the caster. The alternative variations show the periodic behaviours of asymmetrical circulations at both sides of the vertical-bending caster. Besides these circulations were interrelated and interacted, they were also affected by the curved section of the caster, which resulted in the asymmetrical flow structures in the vertical-bending caster. Finally, the effects of casting speed and SEN immersion depths on the oscillation frequency of circulations during a continuous casting process were analysed. As the casting speed increased, the oscillation frequency and power spectrum increased accordingly; as the SEN immersion depth increased, the oscillation frequency and power spectrum thereof decreased accordingly.


Author(s):  
Yaser Khalighi ◽  
Frank Ham ◽  
Parviz Moin ◽  
Sanjiva K. Lele ◽  
Robert H. Schlinker

It is our premise that significant new advances in the understanding of noise generation mechanisms for jets and realistic methods for reducing this noise can be developed by exploiting high-fidelity computational fluid dynamics: namely large eddy simulation (LES). In LES, the important energy-containing structures in the flow are resolved explicitly, resulting in a time-dependent, three-dimensional realization of the turbulent flow. In the context of LES, the unsteady flow occurring in the jet plume (and its associated sound) can be accurately predicted without resort to adjustable empirical models. In such a framework, the nozzle geometry can be included to directly influence the turbulent flow including its coherent and fine-scale motions. The effects of propulsion system design choices and issues of integration with the airframe can also be logically addressed.


Sign in / Sign up

Export Citation Format

Share Document