coherent vortices
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 22)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 930 ◽  
Author(s):  
R.K. Scott ◽  
B.H. Burgess ◽  
D.G. Dritschel

Based on an assumption of strongly inhomogeneous potential vorticity mixing in quasi-geostrophic $\beta$ -plane turbulence, a relation is obtained between the mean spacing of latitudinally meandering zonal jets and the total kinetic energy of the flow. The relation applies to cases where the Rossby deformation length is much smaller than the Rhines scale, in which kinetic energy is concentrated within the jet cores. The relation can be theoretically achieved in the case of perfect mixing between regularly spaced jets with simple meanders, and of negligible kinetic energy in flow structures other than in jets. Incomplete mixing or unevenly spaced jets will result in jets being more widely separated than the estimate, while significant kinetic energy outside the jets will result in jets closer than the estimate. An additional relation, valid under the same assumptions, is obtained between the total kinetic and potential energies. In flows with large-scale dissipation, the two relations provide a means to predict the jet spacing based only on knowledge of the energy input rate of the forcing and dissipation rate, regardless of whether the latter takes the form of frictional or thermal damping. Comparison with direct numerical integrations of the forced system shows broad support for the relations, but differences between the actual and predicted jet spacings arise both from the complex structure of jet meanders and the non-negligible kinetic energy contained in the turbulent background and in coherent vortices lying between the jets.


Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 286
Author(s):  
Shaurya Shrivastava ◽  
Theresa Saxton-Fox

The preferential organisation of coherent vortices in a turbulent boundary layer in relation to local large-scale streamwise velocity features was investigated. Coherent vortices were identified in the wake region using the Triple Decomposition Method (originally proposed by Kolář) from 2D particle image velocimetry (PIV) data of a canonical turbulent boundary layer. Two different approaches, based on conditional averaging and quantitative statistical analysis, were used to analyze the data. The large-scale streamwise velocity field was first conditionally averaged on the height of the detected coherent vortices and a change in the sign of the average large scale streamwise fluctuating velocity was seen depending on the height of the vortex core. A correlation coefficient was then defined to quantify this relationship between the height of coherent vortices and local large-scale streamwise fluctuating velocity. Both of these results indicated a strong negative correlation in the wake region of the boundary layer between vortex height and large-scale velocity. The relationship between vortex height and full large-scale velocity isocontours was also studied and a conceptual model based on the findings of the study was proposed. The results served to relate the hairpin vortex model of Adrian et al. to the scale interaction results reported by Mathis et al., and Chung and McKeon.


Author(s):  
Kaylie Cohanim ◽  
Ken X. Zhao ◽  
Andrew L. Stewart

AbstractInteraction between the atmosphere and ocean in sea ice-covered regions is largely concentrated in leads, which are long, narrow openings between sea ice floes. Refreezing and brine rejection in these leads injects salt that plays a key role in maintaining the polar halocline. The injected salt forms dense plumes that subsequently become baroclinically unstable, producing submesoscale eddies that facilitate horizontal spreading of the salt anomalies. However, it remains unclear which properties of the stratification and leads most strongly influence the vertical and horizontal spreading of lead-input salt anomalies. In this study, the spread of lead-injected buoyancy anomalies by mixed layer and eddy processes are investigated using a suite of idealized numerical simulations. The simulations are complemented by dynamical theories that predict the plume convection depth, horizontal eddy transfer coefficient and eddy kinetic energy as functions of the ambient stratification and lead properties. It is shown that vertical penetration of buoyancy anomalies is accurately predicted by a mixed layer temperature and salinity budget until the onset of baroclinic instability (~3 days). Subsequently, these buoyancy anomalies are spread horizontally by eddies. The horizontal eddy diffusivity is accurately predicted by a mixing length scaling, with a velocity scale set by the potential energy released by the sinking salt plume and a length scale set by the deformation radius of the ambient stratification. These findings indicate that the intermittent opening of leads can efficiently populate the polar halocline with submesoscale coherent vortices with diameters of around 10 km, and provide a step toward parameterizing their effect on the horizontal redistribution of salinity anomalies.


2021 ◽  
Author(s):  
Wenhao Fan ◽  
Haibin Song ◽  
Kun Zhang ◽  
Yi Gong ◽  
Shun Yang ◽  
...  

<p>In this study, when using reflection seismic data to study the wakes of the Batan Islands, a method for estimating the fluid dynamics parameters such as the relative vorticity (relative Rossby number) and the relative potential vorticity is proposed. Although the relative Rossby number estimation method proposed in this study cannot guarantee absolute accuracy in the calculation value, this method is more accurate in describing the positive and negative vorticity distribution for the wakes, and the resolution of the positive and negative vorticity distribution described by this method is higher than the result of the reanalysis data. For the wakes developed in the Batan Islands, the reflection events in the wake development area have the larger inclination than the reflection events in the western Pacific water distribution area. It is also found that the negative vorticity wakes are mainly distributed on the west side of the island/ridge, and the positive vorticity wakes are mainly distributed on the east side of the island/ridge. This is consistent with the understanding of previous wakes simulations. The strong vorticity values in the study area are mainly distributed at depths above 300m, and the maximum impact depth of wakes can reach 600m. At the downstream position of the wake on the survey line 7, it can be seen that the bottom boundary layer has separated, and there is the negative vorticity wakes on the west side intruding into the positive vorticity wakes on the east side , which is presumed to be caused by the disturbance of the small anticyclone existing near the Batan Islands. For the survey line 7, the negative potential vorticity is mainly distributed on the west side of the island/ridge, and the influence range can reach the sea depth of 600m. In the negative potential vorticity region, there is strong energy dissipation and vertical shear. In this study, we don’t find the existence of submesoscale coherent vortices on the survey line 7, but find the reflection structure similar to filaments on the seismic section. Combined with the analysis of the balanced Richardson number angle of survey line 7, we speculate that the wake in the negative potential vorticity distribution area has the characteristics of symmetrical instability, and the symmetrical instability may destroy the process of filaments forming submesoscale coherent vortices.</p>


2021 ◽  
Author(s):  
Wu-ting Tsai ◽  
Guan-hung Lu

<p>The energetic, coherent vortical motions in the aqueous surface layer beneath the wind waves dominate the liquid-phase controlled transport processes across the air-water interface. Through interacting with the interface, these coherent vortices manifest themselves by forming quasi-streamwise, high-speed streaks on the wind waves. The density of these streamwise streaks, which can be quantified by the transverse spacing of streaks, thus characterizes the interfacial transfer contributed by the coherent vortices. The formation of surface streaming on the wind waves is geometrically similar to the low-speed streaks observed in the turbulent wall layers. It is generally accepted that the mean spanwise spacing between these low-speed streaks, when scaled by the viscous length, would exhibit a universal value of 100. Observations in wind-wave flumes, however, show that the transverse scale between high-speed streaming on nonbreaking wind waves is narrower than that between low-speed streaks next to no-slip wall. Comparative numerical simulations of shear flow bounded by flat and wavy surfaces are conducted to explain the variation. Analysis of the vorticity transport in the simulated flows bounded by a wavy surface reveals that the presence of surface waves enhances the production of streamwise enstrophy and, consequently, intensifies the generation of quasi-streamwise vortices that form the elongated streaks.<br>This work is supported by the Taiwan Ministry of Science and Technology (107-2611-M-002 -014 -MY3 and 110-2923-M-002 -014 -MY3).</p>


2021 ◽  
Author(s):  
Suzanne L. Gray ◽  
Kevin Hodges ◽  
Jonathan Vautrey ◽  
John Methven

<p>Human activity in the Arctic is expected to increase as new regions become accessible, with a consequent need for reliable forecasts of hazardous weather. Arctic cyclones are synoptic-scale cyclones developing within or moving into the Arctic region. Meso- to synoptic-scale tropopause-based coherent vortices called tropopause polar vortices (TPVs) are frequently observed in polar regions and are a proposed mechanism for Arctic cyclone genesis and intensification. While the importance of pre-existing tropopause-level features for cyclone development, and their existence as part of the three-dimensional mature cyclone structure, is well established in the mid-latitudes, evidence of the importance of pre-existing TPVs for Arctic cyclone development is more limited. Here we present a climatology and characteristics of summer Arctic cyclones and TPVs, produced by tracking them in the latest global ECMWF reanalysis (ERA5), and determine the role of pre-existing TPVs in the initiation and intensification of these cyclones.</p>


2021 ◽  
Vol 149 (1) ◽  
pp. 189-206
Author(s):  
Kevin A. Biernat ◽  
Lance F. Bosart ◽  
Daniel Keyser

AbstractCoherent vortices in the vicinity of the tropopause, referred to as tropopause polar vortices (TPVs), may be associated with tropospheric-deep cold pools. TPVs and associated cold pools transported from high latitudes to middle latitudes may play important roles in the development of cold air outbreaks (CAOs). The purpose of this study is to examine climatological linkages between TPVs, cold pools, and CAOs occurring in the central and eastern United States. To conduct this study, 1979–2015 climatologies of TPVs and cold pools are constructed using the ERA-Interim dataset and an objective tracking algorithm, and are compared to a 1979–2015 climatology of CAOs occurring in six NCEI-defined climate regions over the central and eastern United States. The climatologies of TPVs and cold pools indicate that central and eastern North America is a preferred corridor for their equatorward transport, and that the occurrence frequency of TPVs and cold pools is higher over northern regions of the United States compared to southern regions of the United States. Correspondingly, there is a higher percentage of CAOs linked to cold pools associated with TPVs over northern regions of the United States (32.1%–35.7%) compared to southern regions of the United States (4.4%–12.5%). TPVs and cold pools contributing to CAOs form most frequently over northern Canada and the Canadian Archipelago, and generally move southeastward toward southern Canada and the northern United States. TPVs and cold pools contributing to CAOs tend to be statistically significantly colder and longer lived when compared to all TPVs and cold pools transported to middle latitudes.


Author(s):  
Christian E. Buckingham ◽  
Jonathan Gula ◽  
Xavier Carton

AbstractWe continue our study of the role of curvature in modifying frontal stability. In Part 1, we obtained an instability criterion valid for curved fronts and vortices in gradient wind balance (GWB): Φ′ = L′q′ < 0, where L′ and q′ are the non-dimensional absolute angular momentum and Ertel potential vorticity (PV), respectively. In Part 2, we investigate this criterion in a parameter space representative of low-Richardson number fronts and vortices in GWB. An interesting outcome is that, for Richardson numbers near one, anticyclonic flows increase in q′, while cyclonic flows decrease in q′, tending to stabilize anticyclonic and de-stabilize cyclonic flow. Although stability is marginal or weak for anticyclonic flow (owing to multiplication by L′), the de-stabilization of cyclonic flow is pronounced, and may help to explain an observed asymmetry in the distribution of small-scale, coherent vortices in the ocean interior. We are referring mid-latitude submesoscale and polar mesoscale vortices that are generated by friction and/or buoyancy forcing within boundary layers but that are often documented outside these layers. A comparison is made between several documented vortices and predicted stability maps, providing support for the proposed mechanism. Finally, a simple expression, which is a root of the stability discriminant, Φ′, explains the observed asymmetry in the distribution of vorticity. In conclusion, the generalized criterion is consistent with theory, observations and recent modeling studies, and demonstrates that curvature in low-stratified environments can de-stabilize cyclonic and stabilize anticyclonic fronts and vortices to symmetric instability. The results may have implications for Earth system models.


2020 ◽  
Vol 189 ◽  
pp. 102452
Author(s):  
Daniel McCoy ◽  
Daniele Bianchi ◽  
Andrew L. Stewart
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document