Dissociative recombination of electrons and molecular ions

1982 ◽  
Vol 136 (1) ◽  
pp. 25 ◽  
Author(s):  
Aleksandr V. Eletskii ◽  
Boris M. Smirnov
2021 ◽  
Vol 39 (2) ◽  
pp. 309-319
Author(s):  
Christopher J. Scott ◽  
Shannon Jones ◽  
Luke A. Barnard

Abstract. We present a method for augmenting spacecraft measurements of thermospheric composition with quantitative estimates of daytime thermospheric composition below 200 km, inferred from ionospheric data, for which there is a global network of ground-based stations. Measurements of thermospheric composition via ground-based instrumentation are challenging to make, and so details about this important region of the upper atmosphere are currently sparse. The visibility of the F1 peak in ionospheric soundings from ground-based instrumentation is a sensitive function of thermospheric composition. The ionospheric profile in the transition region between F1 and F2 peaks can be expressed by the “G” factor, a function of ion production rate and loss rates via ion–atom interchange reactions and dissociative recombination of molecular ions. This in turn can be expressed as the square of the ratio of ions lost via these processes. We compare estimates of the G factor obtained from ionograms recorded at Kwajalein (9∘ N, 167.2∘ E) for 25 times during which the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) spacecraft recorded approximately co-located measurements of the neutral thermosphere. We find a linear relationship between G and the molecular-to-atomic composition ratio, with a gradient of 2.55±0.40. Alternatively, using hmF1 values obtained by ionogram inversion, this gradient was found to be 4.75±0.4. Further, accounting for equal ionisation in molecular and atomic species yielded a gradient of 4.20±0.8. This relationship has potential for using ground-based ionospheric measurements to infer quantitative variations in the composition of the neutral thermosphere via a relatively simple model. This has applications in understanding long-term change and the efficacy of the upper atmosphere on satellite drag.


Science ◽  
2019 ◽  
Vol 365 (6454) ◽  
pp. 676-679 ◽  
Author(s):  
Oldřich Novotný ◽  
Patrick Wilhelm ◽  
Daniel Paul ◽  
Ábel Kálosi ◽  
Sunny Saurabh ◽  
...  

The epoch of first star formation in the early Universe was dominated by simple atomic and molecular species consisting mainly of two elements: hydrogen and helium. Gaining insight into this constitutive era requires a thorough understanding of molecular reactivity under primordial conditions. We used a cryogenic ion storage ring combined with a merged electron beam to measure state-specific rate coefficients of dissociative recombination, a process by which electrons destroy molecular ions. We found a pronounced decrease of the electron recombination rates for the lowest rotational states of the helium hydride ion (HeH+), compared with previous measurements at room temperature. The reduced destruction of cold HeH+ translates into an enhanced abundance of this primordial molecule at redshifts of first star and galaxy formation.


1997 ◽  
Author(s):  
O. Heber ◽  
L. H. Andersen ◽  
D. Kella ◽  
H. B. Pedersen ◽  
L. Vejby-Christensen ◽  
...  

2019 ◽  
Author(s):  
Christopher J. Scott ◽  
Shannon Jones ◽  
Luke A. Barnard

Abstract. Measurements of thermospheric composition via ground-based instrumentation are challenging to make and so details about this important region of the upper atmosphere are currently sparse. We present a technique that deduces quantitative estimates of thermospheric composition from ionospheric data, for which there is a global network of stations. The visibility of the F1 peak in ionospheric soundings from ground-based instrumentation is a sensitive function of thermospheric composition. The ionospheric profile in the transition region between F1 and F2 peaks can be expressed by the G factor, a function of ion production rate and loss rates via ion-atom interchange reactions and dissociative recombination of molecular ions. This in turn can be expressed as the square of the ratio of ions lost via these processes. We compare estimates of the G factor obtained from ionograms recorded at Kwajalein (9° N, 167.2° E) for 25 times during which the TIMED spacecraft recorded approximately co-located measurements of the neutral thermosphere. We find a linear relationship between √G and the molecular: atomic composition ratio, with a gradient of 2.23 ± 0.17 and an offset of 1.66 ± 0.19. This relationship reveals the potential for using ground-based ionospheric measurements to infer quantitative variations in the composition of the neutral thermosphere. Such information can be used to investigate spatial and temporal variations in thermospheric composition which in turn has applications such as understanding the response of thermospheric composition to climate change and the efficacy of the upper atmosphere on satellite drag.


1993 ◽  
Author(s):  
M. Larsson ◽  
G. Sundström ◽  
M. Carlson ◽  
H. Danared ◽  
A. Källberg ◽  
...  

2014 ◽  
Vol 32 (3) ◽  
pp. 501-508 ◽  
Author(s):  
Mendykhan U. Khasenov

AbstractThe mechanisms of level population in high pressure gas lasers pumped by ionizing radiation at the 3p-3s transitions of neon, the d-p transitions of argon, krypton, xenon, and triplet lines of mercury are analyzed. It is shown that dissociative recombination of molecular ions with electrons is not the basic process responsible for populating the p levels of inert gas atoms. It is assumed that the most likely channel for d-level population is direct excitation of atoms by secondary electrons and excitation transfer from buffer gas atoms, with p levels being populated by transitions from upper levels. Dissociative recombination of mercury molecular ions with electrons is the basic process responsible for populating the 73S1 level of mercury atoms.


1999 ◽  
Vol 59 (4) ◽  
pp. 2804-2812 ◽  
Author(s):  
L. Carata ◽  
A. E. Orel ◽  
A. Suzor-Weiner

Sign in / Sign up

Export Citation Format

Share Document