scholarly journals Using wide biological pores to cap and contain the COVID-19 spike protein

Author(s):  
G Sampath

Geometric analysis shows that the spike (S) protein in the COVID-19 virus (SARS-Cov-2) can fully or partially enter into the channel of a wide biological pore like perforin (PFN) or streptolysin (SLO) when the latter is anchored in a bilayer lipid membrane. The PFN channel is a β barrel formed from multiple monomers, for example a ~14 nm diameter channel is formed from 22 monomers. Coincidentally the wide canopy of S (which has three identical chains) has an enclosing diameter of ~14 nm. While inside the channel peripheral residues in the canopy may bind with residues on the pore side of the barrel. If there are no adverse cross-reactions this would effectively prevent S from interacting with a target cell. Calculations with data obtained from PDB and other sources show that there are ~12 peripheral residue triples in S within a circle of diameter ~14 nm that can potentially bind with 22 exposed residues in each barrel monomer. The revised Miyazawa-Jernighan matrix is used to calculate the binding energy of canopy-PFN barrel residue pairs. The results show a large number of binding pairs over distances of up to 38 Å into the pore. This geometric view of capture and containment points to the possibility of using biological pores to neutralize SARS-Cov-2 in its many variant forms. Some necessary conditions that must be satisfied for such neutralization to occur are noted. A wide pore (such as PFN or SLO) can also be used in an electrolytic cell to detect the presence of SARS-Cov-2, which would cause a large-sized blockade of the base current (the ionic current in a fully open pore). It can further be used to quantify the virus level in the sample. Solid-state pores, which have several advantages over biological ones, can be used instead; immune rejection is not an issue and there is no need for the spike or the virus to bind to the pore.

2021 ◽  
Author(s):  
G Sampath

Geometric analysis shows that the spike (S) protein in the COVID-19 virus (SARS-Cov-2) can fully or partially enter into the channel of a wide biological pore like perforin (PFN) or streptolysin (SLO) when the latter is anchored in a bilayer lipid membrane. The PFN channel is a β barrel formed from multiple monomers, for example a ~14 nm diameter channel is formed from 22 monomers. Coincidentally the wide canopy of S (which has three identical chains) has an enclosing diameter of ~14 nm. While inside the channel peripheral residues in the canopy may bind with residues on the pore side of the barrel. If there are no adverse cross-reactions this would effectively prevent S from interacting with a target cell. Calculations with data obtained from PDB and other sources show that there are ~12 peripheral residue triples in S within a circle of diameter ~14 nm that can potentially bind with 22 exposed residues in each barrel monomer. The revised Miyazawa-Jernighan matrix is used to calculate the binding energy of canopy-PFN barrel residue pairs. The results show a large number of binding pairs over distances of up to 38 Å into the pore. This geometric view of capture and containment points to the possibility of using biological pores to neutralize SARS-Cov-2 in its many variant forms. Some necessary conditions that must be satisfied for such neutralization to occur are noted. A wide pore (such as PFN or SLO) can also be used in an electrolytic cell to detect the presence of SARS-Cov-2, which, by blocking the pore would cause a near total blockade of the base current (the ionic current in a fully open pore).


2021 ◽  
Author(s):  
G Sampath

Geometric analysis shows that the spike (S) protein in the COVID-19 virus (SARS-Cov-2) can fully or partially enter into the channel of a wide biological pore like perforin (PFN) or streptolysin (SLO) when the latter is anchored in a bilayer lipid membrane. The PFN channel is a β barrel formed from multiple monomers, for example a ~14 nm diameter channel is formed from 22 monomers. Coincidentally the wide canopy of S (which has three identical chains) has an enclosing diameter of ~14 nm. While inside the channel peripheral residues in the canopy may bind with residues on the pore side of the barrel. If there are no adverse cross-reactions this would effectively prevent S from interacting with a target cell. Calculations with data obtained from PDB and other sources show that there are ~12 peripheral residue triples in S within a circle of diameter ~14 nm that can potentially bind with 22 exposed residues in each barrel monomer. The revised Miyazawa-Jernighan matrix is used to calculate the binding energy of canopy-PFN barrel residue pairs. The results show a large number of binding pairs over distances of up to 38 Å into the pore. This geometric view of capture and containment points to the possibility of using biological pores to neutralize SARS-Cov-2 in its many variant forms. Some necessary conditions that must be satisfied for such neutralization to occur are noted.


2020 ◽  
Vol 59 (SI) ◽  
pp. SIIK02
Author(s):  
Yasutaka Tomioka ◽  
Shogo Takashima ◽  
Masataka Moriya ◽  
Hiroshi Shimada ◽  
Fumihiko Hirose ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 53
Author(s):  
Nobuo Misawa ◽  
Satoshi Fujii ◽  
Koki Kamiya ◽  
Toshihisa Osaki ◽  
Shoji Takeuchi

This paper describes a method for a bilayer lipid membrane (BLM) formation using a perforated sheet along with an open chamber. Microscopic observation of the formed membrane showed a typical droplet interface bilayer. We proved that the formed membrane was a BLM based on electrical measurements of the membrane protein α-hemolysin, which produces nanopores in BLMs. Unlike the conventional approach for BLM formation based on the droplet contact method, this method provides aqueous surfaces with no organic solvent coating layer. Hence, this method is suitable for producing BLMs that facilitate the direct addition of chemicals into the aqueous phase.


2006 ◽  
Vol 51 (12) ◽  
pp. 2512-2517 ◽  
Author(s):  
Xiaohua Liu ◽  
Haixin Bai ◽  
Weimin Huang ◽  
Liangwei Du ◽  
Xiurong Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document